帳號:guest(3.141.198.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃皓群
作者(外文):Huang, Hao-Chun
論文名稱(中文):使用分子動力學模擬研究高分子鏈從球形侷限空間通過奈米孔洞注射到半空間的尺度行為
論文名稱(外文):Ejection of Flexible Polymers from a Spherical Cavity through a Nanopore to a Semi-Space Studied by Molecular Dynamics Simulations
指導教授(中文):蕭百沂
指導教授(外文):Hsiao, Pai-Yi
口試委員(中文):謝之真
陳彥龍
口試委員(外文):Hsieh, Chih-Chen
Chen, Yeng-Long
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011539
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:31
中文關鍵詞:高分子注射分子動力學模擬
外文關鍵詞:polymer ejectionmolecular dynamics simulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:243
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
我們使用朗之萬動力學模擬 (Langevin dynamics simulation) 使用尺度研究柔軟的高分子鍊從球形空腔通過奈米孔洞注射到另一個半空間。
使用尺度理論 (scaling theory),注射時間被預測為 τ∼N^a ϕ_0^b,N 為高分子鏈長,ϕ_0 為高分子在空腔內的體積占比。
我們的模擬結果顯示注射時間有兩個主要的尺度行為: (i) 當 ϕ_0 很大時, τ∼N^1.51 ϕ_0^-1.11, (ii) 當 ϕ_0 很小時,τ∼N^2.30。
此外,注射過程可被區分為成核階段 (nucleation stage)、壓縮階段和非壓縮階段。
在壓縮階段,空腔內的高分子被腔壁所擠壓,而在非壓縮階段則空腔內的高分子不被腔壁所擠壓所以可以被視為無傾向的易位 (unbiased translocation)。
在此研究中,我們合併使用消散理論 (dissipation theory ) 和無傾向的易位的觀念來解釋注射時間的尺度行為。
Langevin dynamics simulations are performed to study ejection of flexible polymers from a spherical cavity through a nanopore to a semi-space.The ejection time is predicted by a scaling theory and reads as τ∼N^a ϕ_0^b where τ, N and ϕ_0 are the ejection time, the chain length, and the initial volume fraction of the polymer confined in the spherical cavity, respectively.Our simulations show two scaling behaviors for the ejection time: (i)τ∼N^1.51 ϕ_0^-1.11 for large ϕ_0 and (ii) τ∼N^2.30 for small ϕ_0.Besides, the ejection process can be divided into there stages.The first stage is the nucleation stage.The second one is the compressed stage, at which the polymer inside the cavity is compressed by the cavity wall.The third one is the uncompressed stage, at which the polymer inside the cavity is uncompressed and the process is viewed as the unbiased translocation process.The scaling behavior of ejection time is studied by a combination of energy dissipation and the concept of unbiased translocation.
Acknowledgements i
Abstract ii
1 Introduction 1
2 Scaling Theory 4
2.1 Polymer Ejection 4
2.2 Unbiased translocation 8
2.3 Summary 9
3 Simulation Model and Method 11
3.1 Polymers 11
3.2 Capsids and pores 12
3.3 Unbiased translocation 13
3.4 Langevin dynamics 13
3.5 Simulation processes 14
3.6 A constraint of the end bead 15
3.7 Ejection time 15
4 Results and Discussions 16
4.1 Prediction of ejection time 16
4.2 Dynamics of ejection 18
4.3 Scalings of translocation time 22
4.4 Jamming effect 23
5 Conclusions 28
Bibliography 30
[1] Prashant K. Purohit, Mandar M. Inamdar, Paul D. Grayson, Todd M. Squires, Jan´e Kondev, and Rob Phillips. Forces during bacteriophage DNA packaging and ejection.
Biophysical Journal, 88(2):851–866, feb 2005.
[2] Pai-Yi Hsiao. Translocation of charged polymers through a nanopore in monovalent and divalent salt solutions: A scaling study exploring over the entire driving force regimes. Polymers, 10(11):1229, November 2018.
[3] M. Muthukumar. Translocation of a confined polymer through a hole. Physical Review Letters, 86(14):3188–3191, apr 2001.
[4] Angelo Cacciuto and Erik Luijten. Confinement-driven translocation of a flexible polymer. Physical Review Letters, 96(23), jun 2006.
[5] Takahiro Sakaue and Natsuhiko Yoshinaga. Dynamics of polymer decompression: Expansion, unfolding, and ejection. Physical Review Letters, 102(14), apr 2009.
[6] M. Muthukumar. Polymer translocation through a hole. The Journal of Chemical Physics, 111(22):10371–10374, dec 1999.
[7] P. G. de Gennes and Thomas A. Witten. Scaling concepts in polymer physics. Physics Today, 33(6):51–54, jun 1980.
[8] Jeffrey Chuang, Yacov Kantor, and Mehran Kardar. Anomalous dynamics of translocation. Physical Review E, 65(1), dec 2001.
[9] Yacov Kantor and Mehran Kardar. Anomalous dynamics of forced translocation. Physical Review E, 69(2), feb 2004.
[10] Takahiro Sakaue and Elie Rapha¨el. Polymer chains in confined spaces and flow injection problems: some remarks. Macromolecules, 39(7):2621–2628, apr 2006.
[11] Angelo Cacciuto and Erik Luijten. Self-avoiding flexible polymers under spherical confinement. Nano Letters, 6(5):901–905, may 2006.
[12] W. Sung and P. J. Park. Polymer translocation through a pore in a membrane. Physical Review Letters, 77(4):783–786, July 1996.
[13] HendrickW. de Haan and GaryW. Slater. Mapping the variation of the translocation scaling exponent with nanopore width. Physical Review E, 81(5), May 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *