帳號:guest(18.116.50.87)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳威佑
作者(外文):Chen, Wei-You.
論文名稱(中文):快速合成PEDOT:PASA及其特性分析,添加溶劑和二級摻雜提升導電性
論文名稱(外文):Rapid Synthesis and Characterization of Poly (3,4-ethylenedioxythiophene):Poly (Aniline-2-Sulfonic Acid) and Conductivity Enhancement by Solvent Treatment and Secondary Doping
指導教授(中文):王本誠
指導教授(外文):Wang, Pen-Cheng
口試委員(中文):王翔郁
吳劍侯
口試委員(外文):Wang, Hsiang-Yu
Wu, Chien-Hou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011534
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:61
中文關鍵詞:PEDOT快速合成改質添加溶劑二級摻雜
外文關鍵詞:PEDOTRapid SynthesismodificationSolvent TreatmentSecondary Doping
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究利用聚焦式微波反應儀將PASA合成時間由24小時縮短至20分鐘, PEDOT合成所需的時間從48小時縮短至20分鐘,藉由微波合成使PEDOT均勻分散在具有磺酸根基團的PASA溶液中,並且不會破壞其結構並使其擁有更好的導電性,以及改質PASA來改善分散性和導電性,並期許經添加溶劑和二級摻雜兩種方法PEDOT:PASA能提升導電性來取代PEDOT:PSS,更進一步期許能代替昂貴且易碎的ITO玻璃在有機太陽能電池中的地位。
經由UV、SEM、ATR和Raman來檢測微波合成的結果,發現和傳統攪拌相比微波合成並不會破壞結構,進一步利用四點探針量測發現有更佳的導電性且有更好的分散性,並將合成後PEDOT:PASA放置發現可分散長達六個月以上不會發生沉澱;藉由加入起始劑幫助PASA合成並和苯胺共聚合,使改質後的PEDOT:PASA在低PH值的分散性由一周提升至六個月,且成功提升一個數量級的導電性。
本實驗使用甲酸、乙二醇、二乙二醇、乙腈、乙醇、DMSO、SDS等溶劑作為添加溶劑和二級摻雜的溶劑並分析對薄膜導電性的影響,由實驗結果可得到在添加溶劑的部分提升2-3個數量級,在二級摻雜的部分可以提升3個數量級接近4個數量級,以及本實驗使用噴霧塗佈製作PEDOT:PASA薄膜,使薄膜擁有較好的導電性、透光性和粗糙度等性質,並利用AFM、UV、四點探針、拉曼、FTIR-ATR、SEM等儀器來探討後續的薄膜特性和電性。
The microwave-assisted rapid synthesis of PASA and PEDOT is used in this study. The PASA reaction time could be shortened from 24 hours to 20 minutes, PEDOT from 48 hours to 20 minutes by microwave. PEDOT is dispersed in the PASA solution having sulfonate group. This study also uses modification, solvent addition, secondary doping to enhance the conductivity of PEDOT: PASA, and hope PEDOTPASA can replace ITO glass in the future.
We use UV, ATR, Raman and four-point probe to explain the success of PEDOT: PASA, the results show that better conductivity and good dispersibility by microwave synthesis without destroying its structure. In order to improve the dispersibility at low PH, we used aniline copolymerization with PASA and add initiator to assist synthesis. The results show that the dispersibility of PEDOT: PASA at low PH is increased from 1 week to at least 6 months, which is the same as Buffer and Deionized water, and improve the modified PEDOT: PASA conductivity by one orders of magnitude.
This study is using two methods to enhance conductivity of PEDOT: PASA. We used many solvents such as EtOH, EG, DEG, FA, ACN, DMSO, SDS et. Both treatment methods can improve conductivity by 2-3 orders. This study analyzes the mechanism and basis of conductivity enhancement by SEM, Raman, UV spectra. The obtained PEDOT: PASA thin film were characterized by AFM, UV spectra, four-point probe ,the results show that spray-coating enhance conductivity, morphology and optical properties compared to drop-coating.
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
一、 緒論 1
1.1前言 1
1-2研究目的 2
二、 文獻回顧 6
2-1 導電高分子 6
2-2 導電機制 7
2-3聚 3,4-乙烯二氧基噻吩(poly-3,4-ethylenedioxythiophene) 9
2-3-1 PEDOT簡介 9
2-3-2 PEDOT製作 10
2-3-3 PEDOT:PSS 性質 12
2-3-4 不同PH值對 PEDOT的影響 13
2-3-5 PEDOT 的應用 14
2-4 提升PEDOT:PSS導電率的方法和機制影響 15
2-5 2-氨基苯磺酸 20
三、儀器設備與操作原理 21
3-1聚焦式微波反應儀 21
3-2 光譜儀器設備 22
3-2-1 紫外光-可見光-近紅外光分光光譜儀 (UV-Vis) 24
3-2-2 傅立葉轉換紅外光光譜儀 (FTIR) 25
3-3四點探針 27
3-4場發射式電子掃描顯微鏡 (SEM) 28
3-5共軛聚焦顯微拉曼光譜儀 30
3-6原子力顯微鏡(AFM) 31
3-7 載子霍爾係數量測系統 32
四、實驗內容 33
4-1 實驗用藥品 33
4-2 實驗流程 34
4-3 化學氧化合成2-氨基苯磺酸溶液和3,4-乙烯二氧基噻吩 34
4-3-1 化學氧化合成聚2-氨基苯磺酸溶液 34
4-3-2化學氧化合成 PEDOT:PASA 35
4-3-3 PEDOT:PASA 薄膜製做方法 36
4-4 PASA改質和PEDOT:PASA摻雜 37
4-4-1 PASA改質 38
4-4-2 PEDOT:PASA 添加溶劑之處理 39
4-4-3 PEDOT:PASA 二級摻雜之處理 40
五、結果與討論 41
5-1 PEDOT:PASA合成之分析 41
5-1-1分散液比較 41
5-1-2光譜儀分析 42
5-1-2 霍爾效應 44
5-1-3薄膜表面形貌分析 44
5-2 PASA改質分析 46
5-3添加溶劑至PEDOT:PASA分散液中之分析 47
5-3-1紫外光光譜分析 47
5-3-2導電性分析和比較 48
5-4 二級摻雜薄膜之分析 49
5-4-1表面形貌分析 49
5-4-2 傅利葉轉換紅外光光譜分析 51
5-4-3 拉曼光譜分析 51
5-4-4導電性分析和比較 52
5-5穩定性測量和機制比較 53
六、結論 55
七、參考文獻 57
[1] D. A. Mengistie, M. A. Ibrahem, P.-C. Wang, and C.-W. Chu, "Highly conductive PEDOT: PSS treated with formic acid for ITO-free polymer solar cells," ACS applied materials & interfaces, vol. 6, no. 4, pp. 2292-2299, 2014.
[2] D. A. Mengistie, P.-C. Wang, and C.-W. Chu, "Effect of molecular weight of additives on the conductivity of PEDOT: PSS and efficiency for ITO-free organic solar cells," Journal of Materials Chemistry A, vol. 1, no. 34, pp. 9907-9915, 2013.
[3] D. Alemu, H.-Y. Wei, K.-C. Ho, and C.-W. Chu, "Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells," Energy & environmental science, vol. 5, no. 11, pp. 9662-9671, 2012.
[4] J. Kim, J. Jung, D. Lee, and J. Joo, "Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents," Synthetic Metals, vol. 126, no. 2-3, pp. 311-316, 2002.
[5] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller‐Meskamp, and K. Leo, "Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post‐treatment for ITO‐free organic solar cells," Advanced Functional Materials, vol. 21, no. 6, pp. 1076-1081, 2011.
[6] J. Ouyang, "“Secondary doping” methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices," Displays, vol. 34, no. 5, pp. 423-436, 2013.
[7] C. K. Chiang et al., "Electrical conductivity in doped polyacetylene," Physical review letters, vol. 39, no. 17, p. 1098, 1977.
[8] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, "Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x," Journal of the Chemical Society, Chemical Communications, no. 16, pp. 578-580, 1977.
[9] A. G. MacDiarmid, "“Synthetic metals”: A novel role for organic polymers (Nobel lecture)," Angewandte Chemie International Edition, vol. 40, no. 14, pp. 2581-2590, 2001.
[10] D. N. Nguyen and H. Yoon, "Recent advances in nanostructured conducting polymers: from synthesis to practical applications," Polymers, vol. 8, no. 4, p. 118, 2016.
[11] A. J. Heeger, "Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture)," Angewandte Chemie International Edition, vol. 40, no. 14, pp. 2591-2611, 2001.
[12] A. J. Heeger, "Semiconducting and metallic polymers: the fourth generation of polymeric materials," ed: ACS Publications, 2001.
[13] S. Roth and W. Graupner, "Conductive polymers: evaluation of industrial applications," Synthetic metals, vol. 57, no. 1, pp. 3623-3631, 1993.
[14] J. Gu et al., "Synthesis and characterization of PEDOT aqueous dispersions with sulfonated polyfluorene as a template and doping agent," Reactive and Functional Polymers, vol. 100, pp. 83-88, 2016.
[15] L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, "Poly (3, 4‐ethylenedioxythiophene) and its derivatives: past, present, and future," Advanced materials, vol. 12, no. 7, pp. 481-494, 2000.
[16] I. Winter, C. Reese, J. Hormes, G. Heywang, and F. Jonas, "The thermal ageing of poly (3, 4-ethylenedioxythiophene). An investigation by X-ray absorption and X-ray photoelectron spectroscopy," Chemical physics, vol. 194, no. 1, pp. 207-213, 1995.
[17] T. Yamamoto and M. Abla, "Synthesis of non-doped poly (3, 4-ethylenedioxythiophene) and its spectroscopic data," Synthetic metals, vol. 100, no. 2, pp. 237-239, 1999.
[18] T. Yamamoto, M. Abla, T. Shimizu, D. Komarudin, B.-L. Lee, and E. Kurokawa, "Temperature dependent electrical conductivity of p-doped poly (3, 4-ethylenedioxythiophene) and poly (3-alkylthiophene) s," Polymer Bulletin, vol. 42, no. 3, pp. 321-327, 1999.
[19] S. Kirchmeyer and K. Reuter, "Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene)," Journal of Materials Chemistry, vol. 15, no. 21, pp. 2077-2088, 2005.
[20] U. Lang, E. Müller, N. Naujoks, and J. Dual, "Microscopical investigations of PEDOT: PSS thin films," Advanced Functional Materials, vol. 19, no. 8, pp. 1215-1220, 2009.
[21] Y. Xia and J. Ouyang, "PEDOT: PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells," Journal of Materials Chemistry, vol. 21, no. 13, pp. 4927-4936, 2011.
[22] P. Tehrani, A. Kanciurzewska, X. Crispin, N. D. Robinson, M. Fahlman, and M. Berggren, "The effect of pH on the electrochemical over-oxidation in PEDOT: PSS films," Solid State Ionics, vol. 177, no. 39-40, pp. 3521-3527, 2007.
[23] H. Shi, C. Liu, Q. Jiang, and J. Xu, "Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review," Advanced Electronic Materials, vol. 1, no. 4, p. 1500017, 2015.
[24] J. Huang, P. F. Miller, J. C. de Mello, A. J. de Mello, and D. D. Bradley, "Influence of thermal treatment on the conductivity and morphology of PEDOT/PSS films," Synthetic Metals, vol. 139, no. 3, pp. 569-572, 2003.
[25] A. Moujoud, S. H. Oh, H. S. Shin, and H. J. Kim, "On the mechanism of conductivity enhancement and work function control in PEDOT: PSS film through UV‐light treatment," physica status solidi (a), vol. 207, no. 7, pp. 1704-1707, 2010.
[26] B. Fan, X. Mei, and J. Ouyang, "Significant conductivity enhancement of conductive poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) films by adding anionic surfactants into polymer solution," Macromolecules, vol. 41, no. 16, pp. 5971-5973, 2008.
[27] M. Döbbelin et al., "Influence of ionic liquids on the electrical conductivity and morphology of PEDOT: PSS films," Chemistry of materials, vol. 19, no. 9, pp. 2147-2149, 2007.
[28] X. Crispin et al., "The origin of the high conductivity of poly (3, 4-ethylenedioxythiophene)− poly (styrenesulfonate)(PEDOT− PSS) plastic electrodes," Chemistry of Materials, vol. 18, no. 18, pp. 4354-4360, 2006.
[29] C. h. Chen, J. C. LaRue, R. D. Nelson, L. Kulinsky, and M. J. Madou, "Electrical conductivity of polymer blends of poly (3, 4‐ethylenedioxythiophene): Poly (styrenesulfonate): N‐methyl‐2‐pyrrolidinone and polyvinyl alcohol," Journal of Applied Polymer Science, vol. 125, no. 4, pp. 3134-3141, 2012.
[30] H. J. Snaith, H. Kenrick, M. Chiesa, and R. H. Friend, "Morphological and electronic consequences of modifications to the polymer anode ‘PEDOT: PSS’," Polymer, vol. 46, no. 8, pp. 2573-2578, 2005.
[31] A. M. Nardes, M. Kemerink, M. De Kok, E. Vinken, K. Maturova, and R. Janssen, "Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol," Organic electronics, vol. 9, no. 5, pp. 727-734, 2008.
[32] A. Pasha, A. S. Roy, M. Murugendrappa, O. A. Al-Hartomy, and S. Khasim, "Conductivity and dielectric properties of PEDOT-PSS doped DMSO nano composite thin films," Journal of Materials Science: Materials in Electronics, vol. 27, no. 8, pp. 8332-8339, 2016.
[33] A. Pasha, S. Khasim, O. A. Al-Hartomy, M. Lakshmi, and K. Manjunatha, "Highly sensitive ethylene glycol-doped PEDOT–PSS organic thin films for LPG sensing," RSC Advances, vol. 8, no. 32, pp. 18074-18083, 2018.
[34] M. Vosgueritchian, D. J. Lipomi, and Z. Bao, "Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes," Advanced functional materials, vol. 22, no. 2, pp. 421-428, 2012.
[35] Y. Xia, K. Sun, and J. Ouyang, "Solution‐processed metallic conducting polymer films as transparent electrode of optoelectronic devices," Advanced Materials, vol. 24, no. 18, pp. 2436-2440, 2012.
[36] Y. Xia and J. Ouyang, "Significant conductivity enhancement of conductive poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids," ACS applied materials & interfaces, vol. 2, no. 2, pp. 474-483, 2010.
[37] J. Kim, J. G. Jang, J.-I. Hong, S. H. Kim, and J. Kwak, "Sulfuric acid vapor treatment for enhancing the thermoelectric properties of PEDOT: PSS thin-films," Journal of Materials Science: Materials in Electronics, vol. 27, no. 6, pp. 6122-6127, 2016.
[38] O. Dimitriev, D. Grinko, Y. V. Noskov, N. Ogurtsov, and A. Pud, "PEDOT: PSS films—Effect of organic solvent additives and annealing on the film conductivity," Synthetic metals, vol. 159, no. 21-22, pp. 2237-2239, 2009.
[39] C. Tan and D. Blackwood, "Interactions between polyaniline and methanol vapour," Sensors and Actuators B: Chemical, vol. 71, no. 3, pp. 184-191, 2000.
[40] B. Fan, Y. Xia, and J. Ouyang, "Novel ways to significantly enhance the conductivity of transparent PEDOT: PSS," in Organic Light Emitting Materials and Devices XIII, 2009, vol. 7415, p. 74151Q: International Society for Optics and Photonics.
[41] Y. Xia and J. Ouyang, "Salt-induced charge screening and significant conductivity enhancement of conducting poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate)," Macromolecules, vol. 42, no. 12, pp. 4141-4147, 2009.
[42] N. Kim et al., "Highly conductive PEDOT: PSS nanofibrils induced by solution‐processed crystallization," Advanced materials, vol. 26, no. 14, pp. 2268-2272, 2014.
[43] C. Yeon, G. Kim, J. Lim, and S. Yun, "Highly conductive PEDOT: PSS treated by sodium dodecyl sulfate for stretchable fabric heaters," RSC Advances, vol. 7, no. 10, pp. 5888-5897, 2017.
[44] J. P. Thomas and K. T. Leung, "Defect‐minimized PEDOT: PSS/planar‐Si solar cell with very high efficiency," Advanced Functional Materials, vol. 24, no. 31, pp. 4978-4985, 2014.
[45] J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, "On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment," Polymer, vol. 45, no. 25, pp. 8443-8450, 2004.
[46] J. W. Choi, M. G. Han, S. Y. Kim, S. G. Oh, and S. S. Im, "Poly (3, 4-ethylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions," Synthetic Metals, vol. 141, no. 3, pp. 293-299, 2004.
[47] G. Wang, Y. Ding, F. Wang, X. Li, and C. Li, "Poly (aniline-2-sulfonic acid) modified multiwalled carbon nanotubes with good aqueous dispersibility," Journal of colloid and interface science, vol. 317, no. 1, pp. 199-205, 2008.
[48] D. R. Ulrich, "Multifunctional macromolecular ultrastructures: Introductory Comments Speciality Polymers' 86," Polymer, vol. 28, no. 4, pp. 533-542, 1987.
[49] M. Khalid and F. Mohammad, "Preparation, electrical properties and thermal stability of conductive polyaniline: nylon-6, 6 composite films," Express Polymer Letters, vol. 1, pp. 711-716, 2007.
[50] Z. D. Zujovic, Y. Wang, G. A. Bowmaker, and R. B. Kaner, "Structure of ultralong polyaniline nanofibers using initiators," Macromolecules, vol. 44, no. 8, pp. 2735-2742, 2011.
[51] D. X. Crispin, "Retracted article: towards polymer-based organic thermoelectric generators," Energy & Environmental Science, 2012.
[52] K. Sun et al., "Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices," Journal of Materials Science: Materials in Electronics, vol. 26, no. 7, pp. 4438-4462, 2015.
[53] Y.-J. Lin, J.-Y. Lee, and S.-M. Chen, "Changing electrical properties of PEDOT: PSS by incorporating with dimethyl sulfoxide," Chemical Physics Letters, vol. 664, pp. 213-218, 2016.
[54] S. Zhang, P. Kumar, A. S. Nouas, L. Fontaine, H. Tang, and F. Cicoira, "Solvent-induced changes in PEDOT: PSS films for organic electrochemical transistors," APL materials, vol. 3, no. 1, p. 014911, 2015.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *