帳號:guest(18.220.86.232)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊祥至
作者(外文):Yang, Hsiang-Chih
論文名稱(中文):以快速微製程開發之三維流體邏輯裝置及整合技術
論文名稱(外文):3D fluidic logic devices by rapid micro-fabrication and integration
指導教授(中文):蘇育全
指導教授(外文):Su, Yu-Chuan
口試委員(中文):陳紹文
林洸銓
口試委員(外文):Chen, Shao-Wen
Lin, Kuang-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011533
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:107
中文關鍵詞:光固化三維列印微流體微流體整合元件氣壓增益閥
外文關鍵詞:3D printingmicrofluidicmicrofluidic integrated componentpressure gain valve
相關次數:
  • 推薦推薦:0
  • 點閱點閱:145
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,隨著生醫與化學領域的發展,微流道裝置的可攜性與積體整合成為了非常重要的開發方向。然而裝置在積體整合的過程中,體積龐大且數量眾多的外部控制(Off-chip control)限制了裝置微型化的可行性。因此許多研究人員嘗試以裝置內部整合元件的邏輯控制(On-chip control)取代外部控制來解決微型化的問題。要實現流體系統的整合,最大的挑戰在於具氣壓增益效果的流體元件之開發是非常困難的。以現有方法(軟微影製程等等)製造的裝置更面臨昂貴、耗時與人力加工的問題。本論文將提出以先進DLP光固化3D列印技術製造的新型氣壓增益閥實現多層級的邏輯元件整合。以整合系統取代外部控制並應用於微流體裝置。
新型氣壓增益閥具有類似電晶體訊號增益與開關的功能,以輸入氣壓控制腔體之間具Bump構造的膈膜切換輸出的開關狀態,目前已經可以達到~200%氣壓增益。接著利用增益閥優異的性能完成了以正壓為訊號源的多種基本邏輯閘。透過不同邏輯閘的整合,就可以產生多元且大量的平行邏輯訊號,減少流體系統對外部控制的需求。對於積體化的流體系統,元件的切換速度是非常重要的參數,透過多層級的系統整合,我們驗證了元件最大切換頻率可達11 Hz。更進一步的實現了以整合電路取代傳統微幫浦的外部輸入源,實現打水速率6.62 ul /min且僅需單一外部輸入的新型微幫浦。
這是第一個以DLP光固化3D列印技術開發的一體成型三維流體邏輯元件整合系統,便宜、快速以及自動化的製程有利於未來流體系統積體化的發展。以正壓為輸入源的特性使其可以被應用於許多類型的裝置,例如微流體分析晶片的可程式化輸入控制器,或是氣動軟性機器人的氣壓源控制器等,是非常重要的研究貢獻。
In recent years, with the development of biomedicine and chemistry, to realize portable and powerful microfluidic systems is more important. However, the bulky and numerous off-chip control device (solenoid valve, Air compressor etc.) would limit the feasibility of miniaturization of microfluidic device. Therefore, many researchers have tried to solve the problem of miniaturization by replacing the external hardware with the on-chip integration of microfluidic logic elements. To realize the integration of microfluidic system, The hardest challenge is development of a mechanical device with pressure gain analogous the voltage gain of a transistor. Here we present a new type of pneumatic gain valves that can be 3D printed and integrated to realize multistage logic systems. They can replace many bulky external hardware, and control a variety of microsystems.
New type of pressure gain valve is analogous to transistor that has a function of signal gain and switching output status. By tailoring the bump geometry, a 200% pressure gain (i.e. the ratio between output and input pressures) have been achieved. As such, the output of one logic stage can be boosted to serve as the input for next stage. 3D integrated digital controllers with multiple logic stages cascaded in series that working frequency can achieve 11 Hz and variety of logic gate have been successfully demonstrated. Furthermore, we developed a new type of peristaltic pump that is composed with integrated fluidic circuit which function as reducing external input and the pump rate can achieve 6.62 µl /min.
摘要 i
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 微流體系統簡介 1
1.2 微流體製造技術 1
1.2.1軟微影製程 1
1.2.2 3D列印翻模技術 3
1.2.3 光固化 3D成型技術 3
1.3 微流體元件 6
1.3.1 微流體電路 6
1.3.2 三維流體元件 7
第二章 文獻回顧 8
2.1 微流體開關元件機制 8
2.1.1 隔膜開關閥 8
2.1.2 氣壓增益閥 10
2.1.3 以負壓為訊號之開關閥 14
2.2 微流體邏輯電路與應用 18
2.2.1 基本邏輯閘 18
2.2.2 氣動式震盪系統 21
2.2.3 等流量輸入式震盪系統 27
2.3 3D列印技術應用於微流道系統 34
2.3.1 光固化反應 35
2.3.2 以3D列印製程開發之開關元件與應用 39
第三章 原理設計 43
3.1 氣壓增益閥設計 43
3.2 基本邏輯元件-反相器 45
3.3 具整合特性之邏輯元件 48
3.3.1 Buffer gate 49
3.3.2 NAND/AND gate 50
3.3.3 NOR/OR gate 51
第四章 元件製造與實驗流程 54
4.1 DLP 3D列印機台與校正方法 54
4.2 光固化材料解析度分析 59
4.3 元件製造流程與製程改良 65
4.3.1 成型後清洗程序 67
4.3.2 隔膜成型技術 68
4.3.3 封裝製程與流道改良 69
4.4 元件性能測試 72
4.4.1 單輸入訊號系統 73
4.4.2 元件工作頻率測試 73
4.4.3 雙輸入訊號系統 75
第五章 結果與討論 77
5.1 DLP Gain valve 77
5.2 NOT gate 79
5.2.1共源系統驗證 79
5.2.2 On/off 切換氣壓與遲滯 81
5.2.3 多層級元件整合 83
5.2.4 工作頻率分析 85
5.3 具可整合特性之邏輯元件 86
5.3.1 Buffer gate 86
5.3.2 NAND/AND gate 88
5.3.3 NOR/OR gate 91
5.4 邏輯元件系統之應用-微幫浦 94
5.5 研究成果總結 98
5.5.1微尺度DLP 3D成型技術優化 98
5.5.2 材料固化光劑量測定方法 99
5.5.3 具整合能力之邏輯元件 99
第六章 未來建議 100
6.1 元件設計與製程優化 100
6.2 流體二極體元件-單向閥 101
參考文獻 103


1. A. Manz. N, Graber. H and M. Widmer, ” Miniaturized total chemical analysis systems: A novel concept for chemical sensing”, Sensor and Actuator B, 1990, 1, 244.
2. A. Manz, Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, “Monolithic Micro-fabricated Valves and Pumps by Multilayer Soft Lithography”, SCIENCE, 2000, 288, 113.
3. Microfluidic devices for modeling cell–cell and particle–cell interactions in the microvasculature - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Fabrication-Process-of-PDMS-devices-by-soft-lithography-a-Spin-coating-of-photoresist_fig1_51496619 [accessed 14 Jul, 2019].
4. 劉亮巖,「可程式化數位壓力控制器之設計與三維列印」,國立清華大學工科所,碩士論文,中華民國106年。
5. Hwang, Y. et al, ”Capillary flow in PDMS cylindrical microfluidic channel using 3-d printed mold”, Journal of Microelectromechanical Systems, 2016, 25, 238.
6. Hwang, Y., Paydar, O. H. and Candler, R. N, “3D printed molds for non-planar PDMS microfluidic channels”, Sensors and Actuators A,2015, 226, 137.
7. Charles, W and Hull, “Apparatus for production of three-dimensional objects by stereolithography”, United States Patent, 1984, US4575330A.
8. Au, A. K., Bhattacharjee, N., Horowitz, L. F., Chang, T. C. & Folch, A. “3D-printed microfluidic automation”, Lab Chip, 2015, 15, 1934.
9. A. Ping Zhang, ”Rapid Fabrication of Complex 3D Extracellular icroenvironments by Dynamic Optical Projection Stereolithography”, Advanced Materials, 2012, 24, 4266.
10. Chad I. Rogers, Kamran Qaderi, Adam T. Woolley, and Gregory P. Nordin, “3D printed microfluidic devices with integrated valves”, BIOMICROFLUIDICS, 2015, 9, 016501.
11. 台灣天馬科技股份有限公司, https://formlabs.com/blog/3d-printing-technology-comparison-sla-dlp/.
12. J. M. Zhang, Andres A. Aguirre-Pablo, E. Q. Li, U. Buttner and Sigurdur T.
” Droplet generation in cross-flow for cost-effective 3D-printed “plug-and-play” microfluidic devices”, RSC Advances, 2016, 6, 81120.
13. H. Gong, M. Beauchamp, S. Perry, A. T. Woolley, Gregory P and Nordin, “Optical
approach to resin formulation for 3D printed microfluidics”, RSC Advances, 2015, 5, 106621.
14. Oh, K. W., Lee, K., Ahn, B., Furlani, E. P., “Design of pressure-driven microfluidic networks using electric circuit analogy”, Lab Chip, 2012,12, 515.
15. Li, S. S., Cheng, C. M., “Analogy among microfluidics, micromechanics, and microelectronics”, Lab Chip, 2013, 13, 3782.
16. Kim, S. J., Yokokawa, R., Lesher-Perez, S. C., Takayama, S., Anal.,” Constant flow-driven microfluidic oscillator for different duty cycles”, Anal Chem, 2012, 84, 1152.
17. Bobak Mosadegh, Chuan-Hsien Kuo, Yi-Chung Tung, Yu-suke Torisawa, Tommaso Bersano-Begey, Hossein Tavana, Shuichi Takayama,” Integrated elastomeric components for autonomous regulation of sequential and oscillatory flow switching in microfluidic devices”, NATURE PHYSICS, 2010, 6, 433.
18. James A.Weaver, Jessica Melin, Don Stark, Stephen R. Quake, Mark. Horowitz, ”Static
control logic for microfluidic devices using pressure-gain valves”, NATURE PHYSICS,
2010, 6, 218.
19. Haeberle, S., Schmitt, N., Zengerle, R. & Ducree, J. “Centrifugo-magnetic pump for
gas-to-liquid sampling”, Sensors and Actuators A,2007, 135, 28.
20. Minsoung Rhee, Mark A. Burns, “Microfluidic pneumatic logic circuits and digital pneumatic
microprocessors for integrated microfluidic systems”, Lab Chip, 2009, 9, 3131.
21. Erik C. Jensen, William H. Grover, Richard A. Mathies, “Micropneumatic Digital Logic Structures for Integrated Microdevice Computation and Control”, IEEE, 2007, 16, 1378.
22. Philip N. Duncan, Transon V. Nguyen, and Elliot E. Hui1,” Pneumatic oscillator circuits for timing and control of integrated microfluidics”, PNAS, 2013, 110, 18104.
23. Michael Wehner, Ryan L. Truby, Daniel J. Fitzgerald, Bobak Mosadegh3,4, George M. Whitesides, Jennifer A. Lewis, Robert J. Wood,” An integrated design and fabrication strategy for entirely soft, autonomous robots”, NATURE, 2016, 536, 451.
24. Jia Min Lee, Meng Zhang, Wai Yee Yeong, “Characterization and evaluation of 3D printed microfluidic chip for cell processing ,” Microfluid Nanofluid, 2015, 20, 1.
25. 鄭正元,3D列印積層製造技術與應用,全華圖書,台灣,2017年5月。
26. 黃錫裕,UV Curable PU樹脂之硬化動力學分析,碩士論文,國立臺北科技大學有機高分子研究所,台北,2004。
27. Brilliant Universal公, http://www.bul.com.hk/bul/chi/technologies/uv_curing
28. 陳奇毅,UV Curable PU 樹脂於不同波長之反應性探討,碩士論文,國立臺北科技大學有機高分子研究所,台北,2002。
29. H. Gong, A. T. Woolley and G. P. Nordin, “High density 3D printed microfluidic valves, pumps, and multiplexers,” Lab Chip, 2016, 16, 2450.
30. H. Gong, A. T. Woolley and G P. Nordin, “3D printed high density, reversible, chip-to-chip microfluidic interconnects”, Lab Chip, 2018, 18, 639.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *