|
[1] Devita, V. T., & Rosenberg, S. A. (2012). Two Hundred Years of Cancer Research. New England Journal of Medicine, 366(23), 2207-2214. [2] Fouad, R. R., Aljohani, H. A., & Shoueir, K. R. (2016). Biocompatible poly(vinyl alcohol) nanoparticle-based binary blends for oil spill control. Marine Pollution Bulletin, 112(1-2), 46-52. [3] Stokes, W.; Berghmans, H. Journal of Polymer Science: Part B: Polymer Physics, 29, 609, 1991. [4] Inoue, H., Kuwahara, S., & Katayama, K. (2013). The whole process of phase transition and relaxation of poly(N-isopropylacrylamide) aqueous solution. Physical Chemistry Chemical Physics, 15(11), 3814. [5] Edmondson, S., Nguyen, N. T., Lewis, A. L., & Armes, S. P. (2010). Co-Nonsolvency Effects for Surface-Initiated Poly(2-(methacryloyloxy)ethyl phosphorylcholine) Brushes in Alcohol/Water Mixtures. Langmuir, 26(10), 7216-7226. [6] Pica, A., & Graziano, G. (2015). On the effect of sodium salts on the coil-to-globule transition of poly(N-isopropylacrylamide). Physical Chemistry Chemical Physics, 17(41), 27750-27757. [7] Pica, A., & Graziano, G. (2017). Why does TMAO stabilize the globule state of PNIPAM? Polymer,124, 101-106. [8] Scherzinger, C., Schwarz, A., Bardow, A., Leonhard, K., & Richtering, W. (2014). Cononsolvency of poly-N-isopropyl acrylamide (PNIPAM): Microgels versus linear chains and macrogels. Current Opinion in Colloid & Interface Science, 19(2), 84-94. [9] Pica, A., & Graziano, G. (2016). An alternative explanation of the cononsolvency of poly(N-isopropylacrylamide) in water–methanol solutions. Physical Chemistry Chemical Physics, 18(36), 25601-25608. [10] Vaisman, I. I., & Berkowitz, M. L. (1992). Local structural order and molecular associations in water-DMSO mixtures. Molecular dynamics study. Journal of the American Chemical Society, 114(20), 7889-7896. [11] Wolf, B. A., & Blaum, G. (1975). Measured and calculated solubility of polymers in mixed solvents: Monotony and cosolvency. Journal of Polymer Science: Polymer Physics Edition, 13(6), 1115-1132. [12] Akl, M. A., Sarhan, A. A., Shoueir, K. R., & Atta, A. M. (2013). Application of Crosslinked Ionic Poly(Vinyl Alcohol) Nanogel as Adsorbents for Water Treatment. Journal of Dispersion Science and Technology, 34(10), 1399-1408. [13] Shoueir, K. R., Sarhan, A. A., Atta, A. M., & Akl, M. A. (2016). Macrogel and nanogel networks based on crosslinked poly (vinyl alcohol) for adsorption of methylene blue from aqua system. Environmental Nanotechnology, Monitoring & Management, 5, 62-73. [14] Pearson, R. M., Hsu, H., Bugno, J., & Hong, S. (2014). Understanding nano-bio interactions to improve nanocarriers for drug delivery. MRS Bulletin, 39(03), 227-237. [15] Mathematical modeling of controlled drug delivery. (2001). Advanced Drug Delivery Reviews, 48(2-3), 137-138. [16] Park, J. H., & Oh, N. (2014). Endocytosis and exocytosis of nanoparticles in mammalian cells. International Journal of Nanomedicine, 51. [17] Hirota, K., & Ter, H. (2012). Endocytosis of Particle Formulations by Macrophages and Its Application to Clinical Treatment. Molecular Regulation of Endocytosis. [18] Mcmillan, S., Rader, C., Jorfi, M., Pickrell, G., & Foster, E. J. (2017). Mechanically switchable polymer fibers for sensing in biological conditions. Journal of Biomedical Optics, 22(2), 027001. [19] Prosanov, I., Abdulrahman, S., Thomas, S., Bulina, N., & Gerasimov, K. (2018). Complex of polyvinyl alcohol with boric acid: Structure and use. Materials Today Communications, 14, 77-81. [20] Prasad, S. R., Kumar, T. S., & Jayakrishnan, A. (2017). Ceramic core with polymer corona hybrid nanocarrier for the treatment of osteosarcoma with co-delivery of protein and anti-cancer drug. Nanotechnology, 29(1), 015101. [21] Cho, E. C., Xie, J., Wurm, P. A., & Xia, Y. (2009). Understanding the Role of Surface Charges in Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell Surface with a I2/KI Etchant. Nano Letters, 9(3), 1080-1084. [22] Advances in the Regulated Pharmaceutical Use of Dimethyl Sulfoxide USP, Ph.Eur. Sep 01, 2016 By Artie S. McKim, Robert Strub. Volume 2016 Supplement, Issue 3, pg s30—s35 [23] Choi, Y., & Park, K. (2018). Targeting Glutamine Metabolism for Cancer Treatment. Biomolecules & Therapeutics, 26(1), 19-28. [24] Charles, M. W. (2007). ICRP Publication 103: Recommendations of the ICRP. Radiation Protection Dosimetry, 129(4), 500-507. [25] Franken, N. A., Rodermond, H. M., Stap, J., Haveman, J., & Bree, C. V. (2006). Clonogenic assay of cells in vitro. Nature Protocols, 1(5), 2315-2319. [26] Yang, X. (2012). Clonogenic Assay. Bio-protocol 2(10): e187. [27] https://www.biomart.cn/experiment/430/488/497/17471.htm [28] Labuschagne, C., Van Den Broek, N., Mackay, G., Vousden, K., & Maddocks, O. (2014). Serine, but Not Glycine, Supports One-Carbon Metabolism and Proliferation of Cancer Cells. Cell Reports,7(4), 1248-1258. [29] Mehrmohamadi, M., Liu, X., Shestov, A., & Locasale, J. (2014). Characterization of the Usage of the Serine Metabolic Network in Human Cancer. Cell Reports, 9(4), 1507-1519. [30] Maddocks, O. D., Athineos, D., Cheung, E. C., Lee, P., Zhang, T., Niels J. F. Van Den Broek, . . . Vousden, K. H. (2017). Erratum: Corrigendum: Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature, 548(7665), 122-122. [31] Palmer, E. E., Hayner, J., Sachdev, R., Cardamone, M., Kandula, T., Morris, P., . . . Kirk, E. P. (2015). Asparagine Synthetase Deficiency causes reduced proliferation of cells under conditions of limited asparagine. Molecular Genetics and Metabolism, 116(3), 178-186. [32] Krall, A. S., Xu, S., Graeber, T. G., Braas, D., & Christofk, H. R. (2016). Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nature Communications, 7(1). [33] Flores, A., Sandoval-Gonzalez, S., Takahashi, R., Krall, A., Sathe, L., Wei, L., . . . Lowry, W. E. (2019). Increased lactate dehydrogenase activity is dispensable in squamous carcinoma cells of origin. Nature Communications, 10(1). [34] Wise, D. R., & Thompson, C. B. (2010). Glutamine addiction: A new therapeutic target in cancer. Trends in Biochemical Sciences, 35(8), 427-433. [35] Hensley, C. T., Wasti, A. T., & Deberardinis, R. J. (2013). Glutamine and cancer: Cell biology, physiology, and clinical opportunities. Journal of Clinical Investigation, 123(9), 3678-3684. [36] Souba, W. W., & Pacitti, A. J. (1992). Review: How Amino Acids Get Into Cells: Mechanisms, Models, Menus, and Mediators. Journal of Parenteral and Enteral Nutrition, 16(6), 569-578. [37] Akita, N., Maruta, F., Seymour, L. W., Kerr, D. J., Parker, A. L., Asai, T., . . . Miyagawa, S. (2006). Identification of oligopeptides binding to peritoneal tumors of gastric cancer. Cancer Science,97(10), 1075-1081. [38] Asai, T., & Oku, N. (2005). Liposomalized Oligopeptides in Cancer Therapy. Methods in Enzymology Liposomes, 163-176. [39] Nakase, I., Noguchi, K., Aoki, A., Takatani-Nakase, T., Fujii, I., & Futaki, S. (2017). Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Scientific Reports, 7(1). [40] Phang, J. M., Liu, W., Hancock, C. N., & Fischer, J. W. (2015). Proline metabolism and cancer. Current Opinion in Clinical Nutrition and Metabolic Care, 18(1), 71-77. [41] Loayza-Puch, F., Rooijers, K., Buil, L. C., Zijlstra, J., Vrielink, J. F., Lopes, R., . . . Agami, R. (2016). Tumour-specific proline vulnerability uncovered by differential ribosome codon reading. Nature,530(7591), 490-494. [42] Sullivan, L., Gui, D., Hosios, A., Bush, L., Freinkman, E., & Vander Heiden, M. (2015). Supporting Aspartate Biosynthesis Is an Essential Function of Respiration in Proliferating Cells. Cell, 162(3), 552-563. [43] Coderre JA, Morris GM. The radiation biology of boron neutron capture therapy. Radiation research. 1999;151(1):1–18. [44] Kumada H, Takada K. Treatment planning system and patient positioning for boron neutron capture therapy. Therapeutic Radiology and Oncology, 2018;2:50. [45] Masunaga, S., Sakurai, Y., Tanaka, H., Tano, K., Suzuki, M., Kondo, N., . . . Ono, K. (2014). The dependency of compound biological effectiveness factors on the type and the concentration of administered neutron capture agents in boron neutron capture therapy. SpringerPlus, 3(1). [46] Egger, A. E., Rappel, C., Jakupec, M. A., Hartinger, C. G., Heffeter, P., & Keppler, B. K. (2009). Development of an experimental protocol for uptake studies of metal compounds in adherent tumor cells. J. Anal. At. Spectrom., 24(1), 51-61. [47] Carabe-Fernandez, A., Dale, R. G., & Jones, B. (2007). The incorporation of the concept of minimum RBE (RBEmin) into the linear-quadratic model and the potential for improved radiobiological analysis of high-LET treatments. International Journal of Radiation Biology, 83(1), 27-39. [48] Beaton-Green, Lindsay & A Burn, Trevor & J Stocki, Trevor & Chauhan, Vinita & Wilkins, Ruth. (2011). Development and characterization of an in vitro alpha radiation exposure system. Physics in medicine and biology. 56. 3645-58. [49] Zhang, F., Yang, J., Tang, L., Wang, W., Sun, K., Ming, Y., . . . Yan, M. (2017). Effect of X-ray irradiation on hepatocarcinoma cells and erythrocytes in salvaged blood. Scientific Reports, 7(1). [50] Maeda, Kenichiro & Yasui, Hironobu & Matsuura, Taeko & Yamamori, Tohru & Suzuki, Motofumi & Nagane, Masaki & Nam, Jin-Min & Inanami, Osamu & Shirato, Hiroki. (2016). Evaluation of the relative biological effectiveness of spot-scanning proton irradiation in vitro. Journal of radiation research. [51] Cojoc, M., Peitzsch, C., Kurth, I., Trautmann, F., Kunz-Schughart, L. A., Telegeev, G. D., . . . Dubrovska, A. (2015). Aldehyde Dehydrogenase Is Regulated by β-Catenin/TCF and Promotes Radioresistance in Prostate Cancer Progenitor Cells. Cancer Research, 75(7), 1482-1494. [52] Wang, J. (2004). Microwave digestion with HNO3/H2O2 mixture at high temperatures for determination of trace elements in coal by ICP-OES and ICP-MS. Analytica Chimica Acta, 514(1), 115-124. [53] Kuehner, E. C., Alvarez, R., Paulsen, P. J., & Murphy, T. J. (1972). Production and analysis of special high-purity acids purified by subboiling distillation. Analytical Chemistry, 44(12), 2050-2056. [54] Cheung, A., Bax, H. J., Josephs, D. H., Ilieva, K. M., Pellizzari, G., Opzoomer, J., … Karagiannis, S. N. (2016). Targeting folate receptor alpha for cancer treatment. Oncotarget, 7(32), 52553–52574. [55] Sosnik, A. (2018). From the “Magic Bullet” to Advanced Nanomaterials for Active Targeting in Diagnostics and Therapeutics. Biomedical Applications of Functionalized Nanomaterials, 1-32. [56] Yoel Sadovsky, Thomas Jansson, Knobil and Neill's Physiology of Reproduction (Fourth Edition), 2015 [57] Wu M.; Gunning W.; Ratnam M. (1999). "Expression of folate receptor type a in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix". Cancer Epidemiology, Biomarkers & Prevention, 8: 775–783. [58] Dam, G. M., Themelis, G., Crane, L. M., Harlaar, N. J., Pleijhuis, R. G., Kelder, W., . . . Ntziachristos, V. (2011). Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: First in-human results. Nature Medicine, 17(10), 1315-1319. [59] Wibowo, A. S., Singh, M., Reeder, K. M., Carter, J. J., Kovach, A. R., Meng, W., . . . Dann, C. E. (2013). Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. Proceedings of the National Academy of Sciences, 110(38), 15180-15188. [60] Parker, N., Turk, M. J., Westrick, E., Lewis, J. D., Low, P. S., & Leamon, C. P. (2005). Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Analytical Biochemistry, 338(2), 284-293. [61] Ducker, G. S., & Rabinowitz, J. D. (2017). One-Carbon Metabolism in Health and Disease. Cell Metabolism, 25(1), 27-42. [62] Stella, B., Arpicco, S., Peracchia, M. T., Desmaële, D., Hoebeke, J., Renoir, M., . . . Couvreur, P. (2000). Design of Folic Acid‐Conjugated Nanoparticles for Drug Targeting. Journal of Pharmaceutical Sciences, 89(11), 1452-1464. [63] Shen, Z., Li, Y., Kohama, K., Oneill, B., & Bi, J. (2011). Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacological Research, 63(1), 51-58. [64] Wang, S., & Low, P. S. (1998). Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. Journal of Controlled Release, 53(1-3), 39-48. [65] Davies DL, Wilson GM. Diuretics: mechanism of action and clinical application. Drug. 1975;9(3):178-226. [66] Allen, B. G., Bhatia, S. K., Anderson, C. M., Eichenberger-Gilmore, J. M., Sibenaller, Z. A., Mapuskar, K. A., . . . Fath, M. A. (2014). Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism. Redox Biology, 2, 963-970. [67] Kanarek, N., Keys, H. R., Cantor, J. R., Lewis, C. A., Chan, S. H., Kunchok, T., . . . Sabatini, D. M. (2018). Histidine catabolism is a major determinant of methotrexate sensitivity. Nature, 559(7715), 632-636. [68] Champ, C. E., Baserga, R., Mishra, M. V., Jin, L., Sotgia, F., Lisanti, M. P., . . . Simone, N. L. (2013). Nutrient Restriction and Radiation Therapy for Cancer Treatment: When Less Is More. The Oncologist, 18(1), 97-103. [69] Yura, Y., & Fujita, Y. (2013). Boron neutron capture therapy as a novel modality of radiotherapy for oral cancer: Principle and antitumor effect. Oral Science International, 10(1), 9-14. [70] National Aeronautics and Space Administration, Science Mission Directorate. (2010). Ultraviolet Waves. [71] J. Cadet and T. Douki , Formation of UV-induced DNA damage contributing to skin cancer development, Photochem. Photobiol. Sci., 2018, 17 , 1816 -1841 [72] Lang, Peter F.; Smith, Barry C. (2003). "Ionization Energies of Atoms and Atomic Ions". Journal of Chemical Education. 80 (8): 938. [73] ISO 21348 Definitions of Solar Irradiance Spectral Categories [74] https://wwwv.tsgh.ndmctsgh.edu.tw/unit/10026/24286 [75] https://www.tankonyvtar.hu/en/tartalom/tamop412A/20110095_fogaszat_angol/ch01s20. html [76] Lomax, M., Folkes, L., & Oneill, P. (2013). Biological Consequences of Radiation-induced DNA Damage: Relevance to Radiotherapy. Clinical Oncology, 25(10), 578-585. [77] Müssig, Dirk. (2013). Re-scanning in scanned ion beam therapy in the presence of organ motion. [78] ISO 21348 Definitions of Solar Irradiance Spectral Categories [79] DeSimone, J.M.; Barth, F.M.; Oh, H.J.; Loo, W.S.; Wilson, M.W.; Hetts, S.W.; Parkinson, D.Y.; Maslyn, J.A.; Robbins, G.R.; Yee, C.R.; et al. 3D Printed Absorber for Capturing Chemotherapy Drugs before They Spread through the Body. ACS Cent. Sci. 2019, 5, 419–427. [80] Chen XC, Oh HJ, Yu JF, et al. Block Copolymer Membranes for Efficient Capture of a Chemotherapy Drug. ACS Macro Lett. 2016;5(8):936–941. [81] CANDU Fundamentals Neutrons and Neutron Interactions [82] Fermi National Accelerator Laboratory Neutron Therapy Facility [83] Schipler, A., & Iliakis, G. (2013). DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Research, 41(16), 7589-7605. |