帳號:guest(18.191.30.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林志宸
作者(外文):Lin, Chih-Chen.
論文名稱(中文):三維水膠功能結構的快速成型與整合技術
論文名稱(外文):Development of 3-D functional hydrogel with rapid prototyping and integration
指導教授(中文):蘇育全
指導教授(外文):Su, Yu-Chuan
口試委員(中文):林洸銓
王本誠
口試委員(外文):Lin, Kuang-Chuan
Wang, Pen-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011521
出版年(民國):108
畢業學年度:108
語文別:中文
論文頁數:88
中文關鍵詞:水膠DMD曝光技術
外文關鍵詞:3D hydrogel structuresDMD-based stereolithography
相關次數:
  • 推薦推薦:0
  • 點閱點閱:180
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
傳統上,DLP光固化系統於製作水膠微結構的應用中,解析度往往會受限於單體(Monomer)在水中明顯的擴散作用,如何突破此瓶頸是許多材料機械領域的研究人員所專注的問題。過去,大多數的研究使用添加劑(例如: 抑制劑、光吸收劑)來降低擴散現象的影響,但解析度的極限仍取決於DMD本身微鏡片的大小。
本研究除了利用添加劑增加結構的解析度,同時於DLP系統下發展動態光罩系統,透過操控介面擴散梯度以及光引發自由基聚合(Free-radical polymerization)的反應特性,讓單體偏離原屬的區域聚合,製作出類比列印的效果,大幅提高DLP系統所製作出的微結構解析度。
定性的部分,本研究選定聚乙二醇雙丙烯酸酯(PEGDA)作為測試的對象,利用動態光罩,製作出特徵長度小於DMD大小的微結構,除此之外,本研究也利用有限差分法(Finite difference method)分析使用動態光罩時,光引發自由基聚合反應的過程,透過改變光罩交換的頻率、起始反應速度的不同以及傅立葉數,我們能夠充分了解此系統的定量影響以及時間相依的過程,幫助未來的研究人員進行動態光罩的設計。
本研究是第一個利用在水膠製程中被認為是缺陷的擴散現象,在光聚合的過程中增加自發性的驅動力,使得原本僅能製作數位結構的DLP系統,能進一步地做出假類比(Quasi-Analog)的結構,大幅提高定義結構的解析度,未來可應用於可饒式電子元件、微流體元件與組織工程…等領域。
Conventionally, the resolution of hydrogel microstructure is usually limited by diffusion effect which is caused by gradient at boundary. It is very critical problem which researcher focus on. In the past, we always used photo-inhibitor or photo-absorber to reduce this effect, however, there is still a limitation depending on the size of DMD.
In this paper, we present a novel method, dynamic lithography system. Through the gradient at boundary and characteristic of free-radical polymerization, we can enhance the resolution significantly by moving monomer from the original location arbitrarily.
For qualitative part, we choose polyethylene glycol diacrylate (PEGDA) for testing, and the microstructure which is smaller than the size of DMD is successfully produced by dynamic lithography. For quantitative part, we utilize finite difference method to analysis the process of free radical polymerization, some factor such as frequency of changing mask, effect of initiation and Fourier number are considered, it can help us to know the detail of this system.
In summary, we have demonstrated DMD-based dynamic lithography scheme that can define quasi-analog microstructure. In the future, it is possible used in biomedical application such as tissue engineering and microfluidic.
摘要 i
Abstract ii
誌謝 iii
圖目錄 x
表目錄 xiv
第一章 緒論 1
1-1 背景 1
1-2 生醫工程(Biomedical engineering) 2
1-2-1 軟性電子元件 2
1-2-2 組織工程(Tissue engineering) 2
1-3 生物相容性材料-水膠(Hydrogel) 3
1-4 三維列印技術 (3D printing) 5
1-4-1 何謂三維列印技術? 5
1-4-2 三維列印技術種類 5
1-5 光聚合反應(Photo-polymerization) 7
1-5-1 自由基聚合反應 (Free radical polymerization) 7
1-5-2 陽離子聚合反應 (Cationic polymerization) 8
1-5-3 常見的光固化材料及其機械強度 8
1-6 研究動機 9
第二章 文獻回顧與探討 10
2-1 光聚合高分子之研究 10
2-1-1 紫外光吸收劑(Photo absorber)對自由基型光聚合反應的影響 10
2-1-2 抑制劑(Inhibitor)對光聚合反應之影響 12
2-1-3 離子鍵型光固化高分子 13
2-1-4 多波長光固化技術之複合材料結構 15
2-2 調控水膠材料之方法 17
2-2-1 製孔劑(Porogen) 17
2-2-2 DMD-based曝光技術 18
2-2-3 冷凍乾燥法 19
2-2-4 發泡法 21
2-3 水膠之應用 22
2-3-1 微過濾器 22
2-3-2 仿生器官 24
2-4 智慧型水膠材料 25
2-4-1 溫感型水膠 26
2-4-2 PH型水膠材料 27
2-4-3感測器 28
2-4-4 Whole cell-based感測器 29
2-5 現今水膠製程上的缺陷 30
2-5-1 選擇性和滲透度的取捨 30
2-5-2 水膠機械強度與孔隙大小之取捨 31
2-5-3 光聚合反應時的擴散現象 32
第三章 實驗原理與設計 34
3-1 製程原理 34
3-1-1 光聚合反應之原理(自由基聚合反應) 34
3-1-2 擴散作用 35
3-1-3 Beer-Lambert law 36
3-2 製程與量測機台介紹 38
3-2-1 DLP三維列印機台 38
3-2-2 DLP三維列印光固化成型法製造流程 39
3-2-3 DLP三維列印機之列印範圍與最佳解析度 41
3-2-3 光學顯微鏡 41
3-2-4 其它實驗儀器及設備 42
3-3 實驗藥品介紹 42
3-3-1 丙烯酸類 42
3-3-2 環氧樹脂類 43
3-3-3 光固化樹脂組成成分 43
3-3-4 反應單體(Monomer) 43
3-3-5 光起始劑 44
3-3-6 其它添加劑 46
3-3-7 本研究所使用之實驗藥品 46
3-4 數值模擬 46
3-4-1 有限差分法 (Finite difference method) 46
3-4-2 有限差分法於擴散方程之解法 48
3-4-2 有限差分法應用於DLP單層曝光 52
3-5 水膠薄膜的製作 54
3-5-1 數位光罩製作 54
3-5-2 動態曝光 55
3-5-3 動態光罩設計流程 57
3-5-4 實驗製程參數 60
3-5-5 模擬計算之參數 60
3-5-6 鏈增長反應省略之驗證 61
第四章 實驗結果與討論 63
4-1 單邊靜態曝光之數值模擬結果 63
4-1-1 單邊曝光的擴散情形 63
4-1-2 起始反應的速度 65
4-1-3 擴散邊界改變的影響 67
4-2 動態曝光 69
4-2-1 動態曝光隨時間變化情形 69
4-2-2 起始反應的速度 72
4-2-3 改變交換頻率 75
4-2-4 暗光罩的比例影響 78
4-2-5 Pixel寬度和擴散情形的關係 79
4-3 動態光罩實際曝光情況 80
4-3-1 不同光罩交換頻率下的曝光情況 80
4-3-2 多樣化的表面形貌 81
第五章 結論 82
5-1 動態光罩的開發與建立數值模型 82
5-2 調控擴散現象與化學反應的方法 83
第六章 未來建議 84
6-1 弧形流道的改良設計 84
6-2 多波長、多材料的調控機制 84
6-3 數值模型的改良 85
參考文獻 86
1. Langer, R & Vacanti JP, Tissue engineering. Science 260, 920-6; 1993.
2. Stem book, https://www.stembook.org/.
3. Wiki,”3D printing”, https://en.wikipedia.org/wiki/3D_printing.
4. 閃鑄科技, https://kknews.cc/tech/48poa5x.html.
5. Zabti, Mohamed Mohamed. Effects of light absorber on micro stereolithography parts. Diss. University of Birmingham, 2012.
6. Dai, Gaole, et al. "Controllable 3D alginate hydrogel patterning via visible-light induced electrodeposition." Biofabrication 8.2 (2016): 025004.
7. Larsen, Esben Kjær Unmack, et al. "Multimaterial hydrogel with widely tunable elasticity by selective photopolymerization of PEG diacrylate and epoxy monomers." Journal of Polymer Science Part B: Polymer Physics 54.13 (2016): 1195-1201.
8. Lee, Andrew G., et al. "Development of macroporous poly (ethylene glycol) hydrogel arrays within microfluidic channels." Biomacromolecules 11.12 (2010): 3316-3324.
9. Yin, Hang, et al. "Orthogonal programming of heterogeneous micro-mechano-environments and geometries in three-dimensional bio-stereolithography." Nature communications 9.1 (2018): 4096.
10. Sornkamnerd, Saranyoo, Maiko K. Okajima, and Tatsuo Kaneko. "Tough and porous hydrogels prepared by simple lyophilization of LC gels." ACS Omega 2.8 (2017): 5304-5314.
11. Garg, Tarun, et al. "Scaffold: a novel carrier for cell and drug delivery." Critical Reviews™ in Therapeutic Drug Carrier Systems 29.1 (2012).
12. Decock, Jérémy, Mathias Schlenk, and Jean-Baptiste Salmon. "In situ photo-patterning of pressure-resistant hydrogel membranes with controlled permeabilities in PEGDA microfluidic channels." Lab on a Chip 18.7 (2018): 1075-1083.
13. Grigoryan, Bagrat, et al. "Multivascular networks and functional intravascular topologies within biocompatible hydrogels." Science 364.6439 (2019): 458-464.
14. Han, Daehoon, et al. "Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography." Scientific reports 8.1 (2018): 1963.
15. D'eramo, Loïc, et al. "Microfluidic actuators based on temperature-responsive hydrogels." Microsystems & Nanoengineering 4 (2018): 17069.
16. Puranik, Amey S., et al. "Synthesis and characterization of pH-responsive nanoscale hydrogels for oral delivery of hydrophobic therapeutics." European Journal of Pharmaceutics and Biopharmaceutics 108 (2016): 196-213.
17. Körner, Julia, et al. "A Sensor Platform for Smart Hydrogels in Biomedical Applications." Multidisciplinary Digital Publishing Institute Proceedings. Vol. 2. No. 13. 2018.
18. Gui, Qingyuan, et al. "The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics." Sensors 17.7 (2017): 1623.
19. An, Xiaochan, et al. "Breaking the permeability–selectivity trade-off in thin-film composite polyamide membranes with a PEG-b-PSF-b-PEG block copolymer ultrafiltration membrane support through post-annealing treatment." NPG Asia Materials 11.1 (2019): 13.
20. Smolne, Sebastian, Stella Weber, and Michael Buback. "Propagation and termination kinetics of poly (ethylene glycol) methyl ether methacrylate in aqueous solution." Macromolecular Chemistry and Physics 217.21 (2016): 2391-2401.
21. Fiedler, Callie Irene. "Characterization of the Properties of Photopatterned Hydrogels for Use in Regenerative Medicine." (2017).
22. Sun, Chia-Wei, and Ching-Cheng Chuang. "Hemodynamics Study Based on Near-Infrared Optical Assessment." InTech, Rijeka & Shanghai (2012): 47-68.
23. Smolne, Sebastian, Stella Weber, and Michael Buback. "Propagation and termination kinetics of poly (ethylene glycol) methyl ether methacrylate in aqueous solution." Macromolecular Chemistry and Physics 217.21 (2016): 2391-2401.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *