帳號:guest(18.191.181.12)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳凱勝
作者(外文):Wu, Kai-Sheng.
論文名稱(中文):發展應用於桌上型掃描穿透式電子顯微鏡之高相干性脈衝電子光源
論文名稱(外文):Development of Highly Coherent Pulsed Electron Source for Desktop Scanning Transmission Electron Microscopy
指導教授(中文):陳福榮
林明緯
指導教授(外文):Chen, Fu-Rong
Lin, Ming-Wei
口試委員(中文):陳賜原
薛又峻
蘇紘儀
口試委員(外文):Chen, Szu-Yuan
Hsueh, Yu-Chun
Su, David
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011515
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:112
中文關鍵詞:超快電子槍飛秒雷射光纖針尖光激發場發射電子槍
外文關鍵詞:Ultrafast electron gunFemtosecond laserOptical fiber nano-tipPhoto-assisted field emission electron gun
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在現今的電子顯微鏡中,穿隧式電子顯微鏡(TEM)具有亞埃級的空間分辨率,我們可以利用其優良的空間分辨率得到許多有價值的信息,以理解從物理系統到生物系統的廣泛問題。然而,在許多化學反應過程,分子反應過程反應時間為飛秒級(10-15秒),但傳統的TEM並沒有這種水準的時間分辨率。這項研究的目的是設計和構建電子顯微鏡的脈衝電子源,為電子顯微鏡增加飛秒分析能力。
對於雷射激發脈衝電子光源,如果用於成像,則有兩個障礙,即空間和時間相干性,需要克服。差的空間和時間相干性主要因為雷射激發電子的尺寸來自大約幾微米的區域且部分為熱游離電子,這阻礙了對原子的空間分辨率。
因此,我們使用光輔助場發射電子的原理,利用場發射電子具有低發散角及高能量相干性,從而提高空間相干性。同時,利用飛秒脈衝激光激發產生飛秒脈衝電子束的電子,從而獲得高空間分辨率且具有飛秒級別的高時間分辨率的脈衝電子束。
為達成上述目的,我們利用CO2雷射光纖熔拉機製備光纖奈米針尖 (針尖曲率半徑<100nm),並利用電子束熱蒸鍍系統及脈衝雷射沉積系統將光纖針尖前端鍍上金屬 (Cr、Au、W),再將飛秒脈衝雷射導入光纖,使脈衝雷射由背向激發電子至高能階,再配合適當電場使高能階電子穿隧場發射出電子,如此一來即可結合脈衝雷射特性製作出一飛秒脈衝電子光源。
我們亦架設出一穩定的飛秒雷射系統 (飛秒雷射震盪器、雷射一級放大器、雷射脈衝延展及壓縮器、雷射二倍頻)且設計出可以將雷射導入場發射電子槍超高真空腔體以利測試電子束性質,綜上述的準備以利我們進行實驗測試。
Transmission Electron Microscopes (TEM) have sub-angstrom spatial resolution and have provided valuable information to understand a broad range of problems from physical to biological systems. However, molecular processes occur at fast rates, femtoseconds (10-15 seconds), but conventional TEM does not have this level of time resolution. The purpose of this work was to design and build a pulsed electron source for electron microscopes to add femtosecond analysis capability to electron microscopes.
In this experiment, we established a high-coherence pulse electron source based on the principle of photo-assit field emission. Because of field emission electrons have excellent properties (low divergence angle and high energy coherent), we can improve spatial coherence in electron microscopy. At the same time, the femtosecond pulsed laser is used to excite the electrons and generate the femtosecond pulsed electron beam. Thereby, we can obtain high spatial resolution and high time resolution pulsed electron source.
In order to achieve the above objectives, we use a CO2 laser fiber thermal puller to prepare a fiber nano-tip (the tip radius of curvature <100nm), and use the electron beam thermal evaporation system and the pulse laser deposition system to coat the the fiber tip with metal (Cr,Au,W). Then, we couple the femtosecond pulse laser into the fiber so that we can accomplish the purpose of this experiment. And we have also set up a stable femtosecond laser system and designed an ultrahigh vacuum electron gun chamber.
摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xiv
第一章 緒論 1
1.1 電子顯微鏡簡介 1
1.2 桌上型電子顯微鏡 2
1.3 超快電子光學 3
1.4 空間及時間解析度 4
1.4.1空間解析度 (Spatial resolution) 5
1.4.2時間解析度 (Spatial resolution) 6
第二章 文獻回顧 7
2.1 超快電子顯微鏡 7
2.2 超快電子顯微鏡應用於材料量測 10
2.3 利用光纖奈米針尖製備超快電子槍 12
第三章 基本理論 18
3.1 空間電荷效應及Boersch effect 18
3.1.1空間電荷效應 18
3.1.2 Boersch effect 19
3.2電子槍理論 19
3.2.1熱游離式電子槍 20
3.2.2冷場發式電子槍 21
3.2.3 Schottky場發式電子槍 24
3.3超快電子槍理論 25
3.3.1 超快雷射引發熱游離脈衝電子光源 25
3.3.1 超快雷射引發場發射脈衝電子光源 26
第四章 實驗架設 31
4.1 光纖及光纖奈米針尖製作儀器 31
4.1.1 光纖熱融拉機 31
4.1.2 電子束熱蒸鍍系統 34
4.1.2 脈衝雷射沉積系統 35
4.2 飛秒雷射系統 38
4.2.1 飛秒雷射震盪器 38
4.2.2 雷射一級放大器 42
4.2.3 脈衝延展及壓縮器 46
4.2.4 single-shot auto-correlator 49
4.2.4 雷射二倍頻及雷射耦合入光纖 53
4.3 電子槍機構設計雷射於光纖傳輸率與電子束校準 54
4.3.1 電子槍腔體及電子束量測機構設計 54
4.3.2 真空幫浦 62
4.3.3 高電壓供應器 64
4.4 雷射於光纖傳輸率量測設計及電子束校準流程 65
4.4.1 雷射於光纖傳遞至針尖傳輸率量測設計 66
4.4.2 電子束校準流程 66
第五章 實驗結果與分析 69
5.1 光纖奈米針尖 69
5.1.1光纖針尖熱融拉 69
5.1.2電子束熱蒸鍍鉻與金於光纖針尖 73
5.1.3 光纖針尖金剝除 75
5.1.4 脈衝雷射沉積鎢於光纖針尖 79
5.2 場發射電流量測 83
5.2.1 場發射電流量測 83
5.2.2電子槍針尖生熱計算與量測 86
5.3 光激發場發射電子束量測 90
5.2.1 飛秒雷射對光纖針尖影響 90
5.2.2 光激發場發射電流量測 94
5.4 場發射及光激發場發射電子束束斑量測 100
5.4.1 螢光屏及ICCD相機 100
5.4.1 場發射電子束束斑 103
5.4.2 光激發場發射電子束束斑 105
第六章 結論 107
參考資料 108

[1].D.B. Williams, C.B. Carter, The transmission electron microscope, in: Transmission electron microscopy, Springer, 1996, pp. 3-17.
[2].R.E. Lee, Scanning electron microscopy and X-ray microanalysis, PTR Prentice Hall, 1993.
[3].J. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D. Romig Jr, C.E. Lyman, C. Fiori, E. Lifshin, Scanning electron microscopy and X-ray microanalysis: a text for biologists, materials scientists, and geologists, Springer Science & Business Media, 2012.
[4].張維祐, 曾英碩, 方建閔, 陳福榮, 新世代桌上型電子顯微鏡的設計與製作, 科儀新知, (2013) 4-13.
[5].J. Zach, M. Haider, Aberration correction in a low voltage SEM by a multipole corrector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 363 (1995) 316-325.
[6].H.H. Rose, Geometrical charged-particle optics, Springer, 2009.
[7].B. Buijsse, Particle-optical apparatus with a permanent-magnetic lens and an electrostatic lens, in, Google Patents, 2006.
[8].J. Lepoole, Permanent magnet lens system, in, Google Patents, 1974.
[9].A. Khursheed, J.T. Thong, J. Phang, I. Ong, Miniature scanning electron microscope design based upon the use of permanent magnets, in: Optical Science, Engineering and Instrumentation'97, International Society for Optics and Photonics, 1997, pp. 175-184.
[10].Ahmed H. Zewail 4D ULTRAFAST ELECTRON DIFFRACTION,CRYSTALLOGRAPHY, AND MICROSCOPY,2006
[11]. Michael S. Grinolds, Vladimir A. Lobastov, Jonas Weissenrieder, and Ahmed H. Zewail,“Four-dimensional ultrafast electron microscopy of phase transistions”, PNAS ,vol.103,18427–18431,2006
[12].Plows GS, Nixon WC (1968) Stroboscopic scanning electron microscopy. J Phys E Sci Instrum 1:595–600. 19.
[13].MacDonald NC, Robinson GY, White RM (1969) Time-resolved scanning electron microscopy and its application to bulk-effect oscillators. J Appl Phys 40:4516–4528.
[14].Ahmed H. Zewail , The Nobel Prize in Chemistry 1999
[15].Ahmed H. Zewail , Scanning ultrafast electron microscopy,PNAS,
2010
[16].Tuggle DW, Swanson LW (1985) Emission characteristics of the ZrO/W thermal field electron source. J Vac Sci Technol B 3:220–223.
[17].Fransen MJ, Faber JS, van Rooy TL, Tiemeijer PC, Kruit P (1998) Experimental evaluation of the extended Schottky model for ZrO/W electron emission. J Vac Sci Technol B 16:2063–2072.
[18].Omar F. Mohammed, Ding-Shyue Yang, Samir Kumar Pal, and Ahmed H. Zewail,“4D Scanning Ultrafast Electron Microscopy: Visualization of Materials Surface”,JACS,vol.133,7708–7711, 2011
[19]. Albert Casandruc, Günther Kassier, Haider Zia, and Robert Buckerand R. J. Dwayne Mille , Fiber tip-based electron source , eSpectra ,2015
[20].T. Vecchione, U. Weierstall, C. Edgcombe, and J. C. H. Spence, Microsc. Microanal. 12, 146 (2006).
[21].Albert Căsăndruc, Robert Bücker, Günther Kassier, and R. J. Dwayne Miller, Optical fiber-based photocathode,APL,2016
[22]. 陳福榮老師高等電子顯微鏡上課講義
[23].H.W. Mook, P. Kruit, “On the monochromatisation of high brightness electron sources for electron microscopy”, Ultramicroscopy, 1999
[24]. Ahmed H. Zewail,“Chemistry and biology in the new age”,The Royal Society of Chemistry ,2185-2187,2002
[25]. Hyotcherl Ihee, Jianming Cao Dr., Ahmed H. Zewail ,“Ultrafast Electron Diffraction of Transient [Fe(CO)4]: Determination of Molecular Structure and Reaction Pathway, Angew.Chem.Int.Ed.vol.40
,2001
[26]. Hyotcherl Ihee, Boyd M. Goodson, Ramesh Srinivasan, Vladimir A. Lobastov, and Ahmed H. Zewail ,“Ultrafast Electron Diffraction and Structural Dynamics: Transient Intermediates in the Elimination Reaction of C2F4I2”, J. Phys. Chem. , Vol. 106, 2002
[27]. Ihee,J Cao, H. Ahmed H. Zewail,“Ultrafast electrondiffraction:
structures in dissociation dynamics of Fe(CO)5”, Chemical Physics Letters,vol281,10–19,1997
[28]. Chong-Yu Ruan,; Franco Vigliotti, Vladimir A. Lobastov, Songye Chen, and Ahmed H. Zewail ,“Ultrafast electron crystallography
:Transient structures of molecules, surfaces, and phase transitions”, PNAS,vol. 101,1123–1128, 2004
M. Merschdorf, W. Pfeiffer,a) A. Thon, and G. Gerber ,“Hot electron tunneling in femtosecond laser-assisted scanning tunneling
microscopy”, applied physics letters,vol. 81,no.2,2002,
[29]. Hommelhoff, P., Kealhofer, C. & Kasevich, M. A ,“Ultrafast Electron Pulses from a Tungsten Tip Triggered by Low-Power Femtosecond Laser Pulses”,PACS,2006
[30]. Ahmed H. Zewail , “Four-dimensional electron microscopy”, Science , 2010
[31]. Archie Howie,“Ultra-fast High Resolution Microscopy: Options for Pump-probe
Methods”, Mater. Res. Soc. Symp. Proc. vol.1026, 2008
[32].Hommelhoff P, Kealhofer C, Aghajani-Talesh A, Sortais YR, Foreman SM, Kasevich MA,“Extreme localization of electrons in space and time”, Ultramicroscopy ,vol. 109, 423–429,2009
[33]. S A Hilbert1, A Neukirch2, C J G J Uiterwaal and H Batelaan,“ Exploring temporal and rate limits of laser-induced electron emission”, J. Phys ,vol. 42 ,2009
[34]. P. Hommelhoff, Y. Sortais, A. Aghajani-Talesh, M. A. Kasevich ,“ Field Emission Tip as a Nanometer Source of Free Electron Femtosecond Pulses”, PACS ,no.78,2006
[35]. Hyun Soon Park, J. Spencer Baskin, Brett Barwick, Oh-Hoon Kwon, Ahmed H.Zewail ,“4D ultrafast electron microscopy :Imaging of atomic motions ,acousticresonances , andmoir e fringe dynamics”, Ultramicroscopy,vol.110,7–19,2009 [37]. Thorlab,0.22 NA Silica Core, Glass Clad Multimode Optical Fiber, Step Index
[38]. SUTTER instrument Laser-Based Micropipette Puller
[39]. 國立成功大學微奈米科技研究中心
[40]. Ducasse A., Rulliere C., Couillaud B., Femtosecond Laser Pulses : Principles and Experiments; Springer-Verlag: Berlin Heidelberg, 1998; pp 53-81.
[41]. 程士勳,Shih-Hsun Cheng,刁維光,Eric Wei-Guang Diau,推拉性分子DPBMN與DPAMN在不同極性溶劑中的螢光緩解動力學研究, 國立交通大學機構典藏,2005
[42]. 朱旭新,啾頻脈衝放大技術的發展與應用,物理雙月刊,2019
[43]. 200µm optical fiber high vacuum feedthrough | Accu-Glass Products
[44]. 600µm Bare Fiber Multi-Use Adapter | Accu-Glass Products
[45]. 鄭鴻斌副教授,真空及超低溫技術研究室,國立台北科技大學
[46]. PHENOM PHAROS DESKTOP SCANNING ELECTRON MICROSCOPE
[47]. A. Kyritsakis and J. P. Xanthakis, Derivation of a generalized Fowler–Nordheim equation for nanoscopic field-emitters,2015
[48]. Wikipedia, Schottky effect

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *