|
[1] R. W. J. J.B. Casady, "Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review," Solid-State Electronics, vol. 39, no. 10, pp. 1409-1422, 1996. [2] R. S. O. P.G. Neudeck, L.Y. Chen, "High-temperature electronics - a role for wide bandgap semiconductors," IEEE, vol. 90, pp. 1065-1076, 2002. [3] F. R. S.J. Pearton, A.P. Zhang, K.P. Lee, "Fabrication and performance of GaN electronic devices," Materials Science and Engineering, vol. 30, pp. 55-212, 2000. [4] A. K. Panigrahy and K.-N. Chen, "Low Temperature Cu–Cu Bonding Technology in Three-Dimensional Integration: An Extensive Review," Journal of Electronic Packaging, vol. 140, no. 1, 2018. [5] Y.-S. Tang, Y.-J. Chang, and K.-N. Chen, "Wafer-level Cu–Cu bonding technology," Microelectronics Reliability, vol. 52, no. 2, pp. 312-320, 2012. [6] R. Khazaka, L. Mendizabal, and D. Henry, "Review on Joint Shear Strength of Nano-Silver Paste and Its Long-Term High Temperature Reliability," (in English), Journal of Electronic Materials, vol. 43, no. 7, pp. 2459-2466, 2014. [7] G. L. Allen, R. A. Bayles, W. W. Gile, and W. A. Jesser, "Small particle melting of pure metals," (in English), Thin Solid Films, vol. 144, no. 2, pp. 297-308, 1986. [8] C.-H. Tsou, K.-N. Liu, H.-T. Lin, and F.-Y. Ouyang, "Electrochemical Migration of Fine-Pitch Nanopaste Ag Interconnects," (in English), Journal of Electronic Materials, vol. 45, no. 12, pp. 6123-6129, 2016. [9] J. Li, C. M. Johnson, C. Buttay, W. Sabbah, and S. Azzopardi, "Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles," Journal of Materials Processing Technology, vol. 215, pp. 299-308, 2015. [10] P. Peng, A. Hu, A. P. Gerlich, G. Zou, L. Liu, and Y. N. Zhou, "Joining of Silver Nanomaterials at Low Temperatures: Processes, Properties, and Applications," ACS Appl Mater Interfaces, vol. 7, no. 23, pp. 12597-618, 2015. [11] W.-H. Li et al., "Low-temperature Cu-to-Cu bonding using silver nanoparticles stabilised by saturated dodecanoic acid," Materials Science and Engineering: A, vol. 613, pp. 372-378, 2014. [12] A. Hu et al., "Low temperature sintering of Ag nanoparticles for flexible electronics packaging," Applied Physics Letters, vol. 97, no. 15, 2010. [13] M. J. M. Jakubowska, K. Kiełbasinski, A. Młożniak, "New conductive thick-film paste based on silver nanopowder for high power and high temperature applications," IEEE, vol. 51, no. 7, pp. 1235-1240, 2011. [14] E. Ide, S. Angata, A. Hirose, and K. Kobayashi, "Metal-metal bonding process using Ag metallo-organic nanoparticles," Acta Materialia, vol. 53, no. 8, pp. 2385-2393, 2005. [15] S. Y. S. K. Volkman, T. Bakhishev, K. Puntambekar, V. Subramanian, M.F. Toney, "Mechanistic studies on sintering of silver nanoparticles," Chemistry of Materials, vol. 23, no. 20, pp. 4634-4640, 2011. [16] P. Peng et al., "Joining of silver nanomaterials at low temperatures: processes, properties, and applications," ACS Applied Materials & Interfaces, vol. 7, no. 23, pp. 12597-12618, 2015. [17] J. R. Sambles, L. Skinner, N. J. P. o. t. R. S. o. L. A. M. Lisgarten, and P. Sciences, "An electron microscope study of evaporating small particles: the Kelvin equation for liquid lead and the mean surface energy of solid silver," Mathematical and Physical Sciences, vol. 318, no. 1535, pp. 507-522, 1970. [18] K. Hayashi and H. J. M. t. Etoh, JIM, "Pressure sintering of iron, cobalt, nickel and copper ultrafine powders and the crystal grain size and hardness of the compacts," Materials transactions, vol. 30, no. 11, pp. 925-931, 1989. [19] J. D. Hansen, R. P. Rusin, M. H. Teng, and D. L. J. J. o. t. A. C. S. Johnson, "Combined‐Stage Sintering Model," Journal of the American Ceramic Society, vol. 75, no. 5, pp. 1129-1135, 1992. [20] D. Owen and A. J. N. m. Chokshi, "An evaluation of the densification characteristics of nanocrystalline materials," Nanostructured Materials, vol. 2, no. 2, pp. 181-187, 1993. [21] Y. J. Moon, H. Kang, K. Kang, and S.-J. J. J. o. E. M. Moon, "Effect of thickness on surface morphology of silver nanoparticle layer during furnace sintering," Journal of Electronic Materials, vol. 44, no. 4, pp. 1192-1199, 2015. [22] J. Groza and R. J. N. m. Dowding, "Nanoparticulate materials densification," Nanostructured Materials, vol. 7, no. 7, pp. 749-768, 1996. [23] D. R. Lide, CRC handbook of chemistry and physics. CRC press, 2004. [24] Y. Morisada, T. Nagaoka, M. Fukusumi, Y. Kashiwagi, M. Yamamoto, and M. J. J. o. e. m. Nakamoto, "A low-temperature bonding process using mixed Cu–Ag nanoparticles," Journal of Electronic Materials, vol. 39, no. 8, pp. 1283-1288, 2010. [25] T. Morita, E. Ide, Y. Yasuda, A. Hirose, and K. Kobayashi, "Study of Bonding Technology Using Silver Nanoparticles," (in English), Japanese Journal of Applied Physics, vol. 47, no. 8, pp. 6615-6622, 2008. [26] A. Sawatzky and F. E. Jaumot, "Diffusion of the Elements of the Ib and Iib Subgroups in Silver," (in English), Transactions of the American Institute of Mining and Metallurgical Engineers, vol. 209, no. 10, pp. 1207-1210, 1957. [27] D. B. Williams and C. B. Carter, "The transmission electron microscope," in Transmission electron microscopy: Springer, 1996, pp. 3-17. [28] F. Le Henaff, S. Azzopardi, J. Y. Deletage, E. Woirgard, S. Bontemps, and J. Joguet, "A preliminary study on the thermal and mechanical performances of sintered nano-scale silver die-attach technology depending on the substrate metallization," Microelectronics Reliability, vol. 52, no. 9-10, pp. 2321-2325, 2012. [29] J. Eggers, "Coalescence of spheres by surface diffusion," (in English), Physical Review Letters, vol. 80, no. 12, pp. 2634-2637, 1998. [30] J. E. Morris, "Nanoparticle properties," in Nanopackaging: Springer, 2018, pp. 201-217. [31] M. J. Mayo, "Processing of nanocrystalline ceramics from ultrafine particles," (in English), International Materials Reviews, vol. 41, no. 3, pp. 85-115, 1996. [32] P. Zeng, S. Zajac, P. C. Clapp, and J. A. Rifkin, "Nanoparticle sintering simulations," (in English), Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 252, no. 2, pp. 301-306, 1998. [33] L. Ding, R. L. Davidchack, and J. Pan, "A molecular dynamics study of sintering between nanoparticles," Computational Materials Science, vol. 45, no. 2, pp. 247-256, 2009. [34] Z. Z. Fang, H. Wang, and V. Kumar, "Coarsening, densification, and grain growth during sintering of nano-sized powders—A perspective," International Journal of Refractory Metals and Hard Materials, vol. 62, pp. 110-117, 2017. [35] H. T. Wang, Z. Z. Fang, and K. S. Hwang, "Kinetics of Initial Coarsening During Sintering of Nanosized Powders," (in English), Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, vol. 42a, no. 11, pp. 3534-3542, 2011. [36] H. Wang and Z. J. J. o. t. A. C. S. Zak Fang, "Kinetic Analysis of Densification Behavior of Nano‐sized Tungsten Powder," Journal of the American Ceramic Society, vol. 95, no. 8, pp. 2458-2464, 2012. [37] M. L. Allen et al., "Electrical sintering of nanoparticle structures," Nanotechnology, vol. 19, no. 17, p. 175201, 2008. [38] A. Zuruzi and K. S. Siow, "Electrical Conductivity of Porous Silver Made from Sintered Nanoparticles," (in English), Electronic Materials Letters, vol. 11, no. 2, pp. 308-314, 2015. [39] J. C. Kim, K. H. Auh, and D. M. Martin, "Multi-level particle packing model of ceramic agglomerates," (in English), Modelling and Simulation in Materials Science and Engineering, vol. 8, no. 2, pp. 159-168, 2000. [40] P. Bowen and C. Carry, "From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides," (in English), Powder Technology, vol. 128, no. 2-3, pp. 248-255, 2002. [41] A. J. p. s. s. Bukaluk, "AES depth profile studies of interdiffusion in the Ag Cu bilayer and multilayer thin films," vol. 118, no. 1, pp. 99-107, 1990.
|