帳號:guest(3.144.37.153)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王湛迪
作者(外文):Wang, Chan-Ti
論文名稱(中文):從X光反射率探討鉍薄膜沉積在玻璃基板之表面形貌
論文名稱(外文):Morphology of Sputtered Bi Thin Films on Glass Substrates studied by using X-ray Reflectivity
指導教授(中文):李志浩
指導教授(外文):Lee, Chih-Hao
口試委員(中文):林滄浪
翁世璋
口試委員(外文):Lin, Tsang-Lang
Weng, Shih-Chang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011509
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:90
中文關鍵詞:同步輻射X光繞射退火粗糙度、X光反射率表面氧化鉍
外文關鍵詞:Synchrotron radiationX-ray diffractionAnnealingBismuth filmRoughnessX-ray reflectivitySurfaceBismuth oxide film
相關次數:
  • 推薦推薦:0
  • 點閱點閱:290
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
鉍金屬(Bismuth)近年因為拓樸絕緣體的發展而受到許多的重視,而我們利用鉍金屬濺鍍在玻璃基板上來研究表面形貌的變化,主要利用X光反射率作為主要工具,而AFM輔助量測表面形貌以及粗糙度,而從我們的實驗結果分析因為利用GenX軟體分析上的限制,在X光相干長度小於島狀成長大小時,無法有較好的擬合,在XRR厚度與粗糙度的成長指數約為0.5~1之間而AFM結果為1的成長指數較接近非常粗糙的表面,也量測了退火後以及在大氣下加熱後的薄膜進行分析,得到了不同情況下的薄膜成長情況,從區域偵檢器量測的數據也得出了薄膜2D-XRD的圖,XRD中鉍為(012)優選方向的繞射峰,而氧化鉍為(021)優選方向的繞射峰,另外利用四點探針量測了在未退火樣品電阻率值在厚度高時為2.58 X 10-4 Ωcm比塊材大兩倍左右的值以及XRD、XAS及XPS得知了經大氣下加熱後從一開始的鉍轉化成β相的氧化鉍。
Recently, bismuth is attractive on the world because of the fascinating property in topological insulators development. In this thesis, we use the sputtering technique to grow bismuth thin film on glass substrate to research the surface morphology change. We choose X-Ray Reflectivity and Atomic Force Microscope for the main tools to examine the thin film roughness, thickness and electron density. In the experiment analysis result, we discover that the growth exponent of thickness and roughness is about 0.5 to 1.Besides, we also measure bismuth film on the annealing at 250 ℃ and heating in atmosphere two situations. The two different situations show the change on the film. From the XRD result, we can know the preferred orientation is (012) diffraction peak in bismuth and (021) diffraction peak in bismuth oxide. In XRR result the error bar of roughness determination is huge and GenX can not fit the curve properly because of the big island growth is larger than coherent length of X-Ray and make the uncertainly tremendous. The electric property is conducted by a four-probe measurement and show the resistivity of Bi thin film is about two times larger than bulk. A β phase in bismuth oxide also can be confirmed from XRD,XRR,XPS,XAS result.
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1. 前言 1
1.2. 文獻回顧與介紹 3
1.3. 薄膜成長理論 5
1.3.1 薄膜成長的表面行為 5
1.3.2 薄膜的尺度效應 8
1.3.3成長模型 10
1.3.3.1 隨機沉積(random deposition) 10
1.3.3.2 表面鬆弛的隨機成長模型 11
1.3.3.3 彈道的沉積模型 11
1.3.3.4 EW(Edward-Wilkinson)方程式與KPZ(Kardar-Parisi-Zhang)方程式 12
第二章 實驗方法與原理 14
2.1 實驗儀器與原理 14
2.1.1 直流濺鍍(DC Sputtering) 14
2.1.2 交流濺鍍(RF Sputtering) 15
2.1.3 磁控濺鍍(Magnetron Sputtering) 16
2.2同步輻射光源 (Synchrotron Radiation Light Source) 17
2.3 X光繞射 (X-ray Diffraction) 19
2.4.X光反射率(X-ray Reflectivity)[32] 20
2.5. X光吸收光譜 (X-ray Absorption Spectroscopy) 24
2.6 薄膜的製備 26
第三章 結果與討論 28
3.1 鉍薄膜晶體結構分析 28
3.1.1 XRD 分析 28
3.1.2 XRR分析 38
3.1.3 AFM 分析 47
3.1.4 電阻分析 49
3.2 退火後之鉍薄膜晶體結構分析 51
3.2.1 XRD分析 51
3.2.2 XRR分析 58
3.2.3 AFM分析 60
3.2.4 電阻分析 61
3.3加熱後之鉍薄膜晶體結構分析 63
3.3.1 XRD分析 63
3.3.2 XRR分析 68
3.3.3 AFM 分析 71
3.3.4 XAS分析 72
3.3.5 XPS分析 73
3.3.6 氧化鉍之XRR分析 75
3.4 不同基板及濺鍍方式鉍薄膜晶體結構分析 77
3.4.1 XRR分析 77
3.4.2 探討自由能與表面粗糙度影響 79
第四章 結論 82
未來展望 83
文獻參考 84
附錄 88


[1] H. Hattab et al., "Epitaxial Bi(111) films on Si(001): Strain state, surface morphology, and defect structure," Thin Solid Films, vol. 516, no. 23, pp. 8227-8231, 2008/10/01/ 2008.
[2] J. Chang, H. Kim, J. Han, M. H. Jeon, and W. Y. Lee, "Microstructure and magnetoresistance of sputtered bismuth thin films upon annealing," vol. 98, no. 2, p. 023906, 2005.
[3] H. Mönig et al., "Structure of the (111) surface of bismuth: LEED analysis and first-principles calculations," Physical Review B, vol. 72, no. 8, p. 085410, 08/03/ 2005.
[4] C. R. Ast and H. Höchst, "Fermi Surface of Bi(111) Measured by Photoemission Spectroscopy," Physical Review Letters, vol. 87, no. 17, p. 177602, 10/09/ 2001.
[5] T. Hirahara et al., "Quantum well states in ultrathin Bi films: Angle-resolved photoemission spectroscopy and first-principles calculations study," Physical Review B, vol. 75, no. 3, p. 035422, 01/24/ 2007.
[6] D.-H. Kim, S.-H. Lee, J.-K. Kim, and G.-H. Lee, "Structure and electrical transport properties of bismuth thin films prepared by RF magnetron sputtering," Applied Surface Science, vol. 252, no. 10, pp. 3525-3531, 2006/03/15/ 2006.
[7] A. Jacquot, M. O. Boffoué, B. Lenoir, and A. Dauscher, "The effect of different scanning schemes on target and film properties in pulsed laser deposition of bismuth," Applied Surface Science, vol. 156, no. 1, pp. 169-176, 2000/02/02/ 2000.
[8] Y. C. Chan and D. Yang, "Failure mechanisms of solder interconnects under current stressing in advanced electronic packages," Progress in Materials Science, vol. 55, no. 5, pp. 428-475, 2010/07/01/ 2010.
[9] D. Hsieh et al., "A topological Dirac insulator in a quantum spin Hall phase," Nature, vol. 452, no. 7190, pp. 970-974, 2008/04/01 2008.
[10] L. Kumari, S.-J. Lin, J.-H. Lin, Y.-R. Ma, P.-C. Lee, and Y. Liou, "Effects of deposition temperature and thickness on the structural properties of thermal evaporated bismuth thin films," Applied Surface Science, vol. 253, no. 14, pp. 5931-5938, 2007/05/15/ 2007.
[11] Y. Ahn, Y.-H. Kim, S.-I. Kim, and K.-H. Jeong, "Thickness dependent surface microstructure evolution of bismuth thin film prepared by molecular beam deposition method," Current Applied Physics, vol. 12, no. 6, pp. 1518-1522, 2012/11/01/ 2012.
[12] M. O. Boffoué, B. Lenoir, A. Jacquot, H. Scherrer, A. Dauscher, and M. Stölzer, "Structure and transport properties of polycrystalline Bi films," Journal of Physics and Chemistry of Solids, vol. 61, no. 12, pp. 1979-1983, 2000/12/01/ 2000.
[13] J.-H. Hsu, Y.-S. Sun, H.-X. Wang, P. C. Kuo, T.-H. Hsieh, and C.-T. Liang, "Substrate dependence of large ordinary magnetoresistance in sputtered Bi films," Journal of Magnetism and Magnetic Materials, vol. 272-276, pp. 1769-1771, 2004/05/01/ 2004.
[14] S. A. Stanley and M. D. J. A. P. A. Cropper, "Structure and resistivity of bismuth thin films deposited by pulsed DC sputtering," journal article vol. 120, no. 4, pp. 1461-1468, September 01 2015.
[15] T.-W. Huang, H.-Y. Lee, Y.-W. Hsieh, and C.-H. Lee, "X-ray study of the surface morphology of crystalline and amorphous tantalum peroxide thin films prepared by RF magnetron sputtering," Journal of Crystal Growth, vol. 237-239, pp. 492-495, 2002/04/01/ 2002.
[16] C.-H. Lee and Y.-D. Tzeng, "Study of the morphology of ultra-thin Pt films as the anode of an organic light emitting display," Thin Solid Films, vol. 517, no. 17, pp. 5116-5119, 2009/07/01/ 2009.
[17] C.-H. Lee and S.-Y. Tseng, "In situ X-ray reflectivity measurement of thin film growth during vacuum deposition," Applied Surface Science, vol. 92, pp. 282-286, 1996/02/02/ 1996.
[18] O. Prakash, A. Kumar, A. Thamizhavel, and S. Ramakrishnan, "Discovery of superconductivity in pure Bi single crystal," 03/14 2016.
[19] 黃子文, "利用臨場 X 光反射率量測法研究Ta2O5薄膜結構與表面形貌之變," 國立清華大學碩士論文, 2002.
[20] R. K. Heilmann and R. M. Suter, "In situ specular and diffuse x-ray reflectivity study of growth dynamics in quench-condensed xenon films," Physical Review B, vol. 59, no. 4, pp. 3075-3085, 01/15/ 1999.
[21] R. W. Vook, "Structure and growth of thin films," International Metals Reviews, vol. 27, no. 1, pp. 209-245, 1982/01/01 1982.
[22] D. M. Mattox, "Particle bombardment effects on thin‐film deposition: A review," vol. 7, no. 3, pp. 1105-1114, 1989.
[23] T. Karabacak, H. Guclu, and M. Yuksel, "Network behavior in thin film growth dynamics," Physical Review B, vol. 79, no. 19, p. 195418, 05/15/ 2009.
[24] J. A. Thornton, "High Rate Thick Film Growth," vol. 7, no. 1, pp. 239-260, 1977.
[25] F. Family, "Dynamic scaling and phase transitions in interface growth," Physica A: Statistical Mechanics and its Applications, vol. 168, no. 1, pp. 561-580, 1990/09/01/ 1990.
[26] H. E. S. A.L.Barabasi, "Fractal Concepts in Surface Growth," Cambridge University Press,Cambridge, 1995.
[27] S. T. Chui and J. D. Weeks, "Dynamics of the Roughening Transition," Physical Review Letters, vol. 40, no. 12, pp. 733-736, 03/20/ 1978.
[28] S. F. Edwards and D. R. Wilkinson, "The surface statistics of a granular aggregate," vol. 381, no. 1780, pp. 17-31, 1982.
[29] M. Kardar, G. Parisi, and Y.-C. Zhang, "Dynamic Scaling of Growing Interfaces," Physical Review Letters, vol. 56, no. 9, pp. 889-892, 03/03/ 1986.
[30] http://www.polifab.polimi.it/equipments/orion-8/.
[31] https://www.nsrrc.org.tw/.
[32] 汪建明主編, "材料分析," 中國材料學會.
[33] M. Yasaka, "X-ray thin-film measurement techniques V . X-ray reflectivity measurement
" Conference Proceedings, 2010.
[34] D.-C. Nguyen, "基於鈀奈米結構的氫氣感測器及具矯頑力增進的鐵
鈀垂直磁記錄介質之研究," 國立清華大學碩士論文 2018.
[35] B. D. C. S. R. Stock, "Elements of X-Ray Diffraction," 2014.
[36] S. Migita, K. Sakai, H. Ota, Z. Mori, and R. Aoki, "The influence of Bi-sticking coefficient in the growth of Bi(2212) thin film by ion beam sputtering," Thin Solid Films, vol. 281-282, pp. 510-512, 1996/08/01/ 1996.
[37] T.-M. Lu, "Evolution of Thin Film Morphology: Modeling and Simulations," 2008.
[38] C.-H. Lee, P.-Y. Chuang, Y.-S. Lin, and Y.-H. Wu, "The Coherent Limitation of the Specular X-ray and Neutron Reflectivity on the Characterization of the Physical Vapor Deposition Thin Films," Chinese Journal of Physics, vol. 50, 04/01 2012.
[39] T. Karabacak, "Thin-film growth dynamics with shadowing and re-emission effects," vol. 5 %J Journal of Nanophotonics, no. 1, p. 052501, 2011.
[40] C.-H. Lee, F.-G. Guo, and C.-C. Chu, "The Thickness Dependent of Optical Properties, Resistance, Strain and Morphology of Mo Thin Films for The Back Contact of CIGS Solar Cells," Chinese Journal of Physics, vol. 50, no. 2, pp. 311-321, 2012.
[41] A. S. Petrovskaya et al., "Hydrophilic properties of surface of nanostructured tantalum films and its oxynitride compounds," Journal of Physics: Conference Series, vol. 1281, p. 012061, 2019/07 2019.
[42] L. Vitos, A. V. Ruban, H. L. Skriver, and J. Kollár, "The surface energy of metals," Surface Science, vol. 411, no. 1, pp. 186-202, 1998/08/11/ 1998.
[43] K.-S. Wu and M.-Y. Chern, "Temperature-dependent growth of pulsed-laser-deposited bismuth thin films on glass substrates," Thin Solid Films, vol. 516, no. 12, pp. 3808-3812, 2008/04/30/ 2008.
[44] Megha, S. Rathod, A. Lakhani, and D. Kumar, "Growth, structural characterization and transport study of Bismuth thin films," vol. 2100, no. 1, p. 020155, 2019.
[45] M. Jankowski et al., "Controlling the growth of Bi(110) and Bi(111) films on an insulating substrate," Nanotechnology, vol. 28, no. 15, p. 155602, 2017/03/16 2017.
[46] H.-C. Su, C.-H. Lee, M.-Z. Lin, and T.-W. H. J. C. J. o. Physics, "A Comparison Between X-ray Reflectivity and Atomic Force Microscopy on the Characterization of a Surface Roughness," (in 英文), vol. 50, no. 2, pp. 291-300, 2012.
[47] R. A. Hoffman and D. R. Frankl, "Electrical Transport Properties of Thin Bismuth Films," Physical Review B, vol. 3, no. 6, pp. 1825-1833, 03/15/ 1971.
[48] A. F. Wells, "Structural Inorganic Chemistry. 5th. ," London, England: Oxford University Press. p.890, 1984.
[49] X. Yang et al., "Enhanced photocatalytic performance: aβ-Bi2O3thin film by nanoporous surface," Journal of Physics D: Applied Physics, vol. 46, no. 3, p. 035103, 2012/12/10 2012.
[50] 劉英鴻, "Synthesis and characterization of wafer-scale bismuth oxide nanostructures," 國立東華大學碩士論文, 2014.
[51] 張赫, "Magnetically-induced resistive switching in Iron-doped β-Bi2O3 films," 國立高雄大學碩士論文, 2014.
[52] G. Guenther and O. Guillon, "Solid state transitions of Bi2O3 nanoparticles," Journal of Materials Research, vol. 29, no. 12, pp. 1383-1392, 2014.
[53] J. F. Moulder, "Handbook of X-ray Photoelectron Spectroscopy," 1992.
[54] "http://www.ramehart.com/contactangle.htm."
[55] R. N. Wenzel, "RESISTANCE OF SOLID SURFACES TO WETTING BY WATER," Industrial & Engineering Chemistry, vol. 28, no. 8, pp. 988-994, 1936/08/01 1936.
[56] A. B. D. Cassie, "CONTACT ANGLES," Discussions of the Faraday Society, vol. 3, pp. 11-16, 1948.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *