帳號:guest(18.224.73.124)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張崇維
作者(外文):Chang, Chung-Wei
論文名稱(中文):顆粒物質對金黃色葡萄球菌與表皮葡萄球菌的影響
論文名稱(外文):Effect of Particulate Matters on Staphylococcus aureus and Staphylococcus epidermidis
指導教授(中文):王翔郁
指導教授(外文):Wang, Hsiang-Yu
口試委員(中文):王竹方
張晃猷
口試委員(外文):Wang, Chu-Fang
Chang, Hwan-You
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011508
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:123
中文關鍵詞:顆粒物質金黃色葡萄球菌表皮葡萄球菌
外文關鍵詞:Particulate MattersStaphylococcus aureusStaphylococcus epidermidis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:373
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究為探討三種不同的顆粒物質對金黃色葡萄球菌(S. aureus)與表皮葡萄球菌(S.epidermidis)的影響,顆粒物質分別為可代表燃煤電廠廢氣的SRM 1633c-Trace Elements in Coal Fly和多數研究探討各式洩漏汙染時會採用的SRM 2709a-San Joaquin Soil, SRM 2711a-Montana II Soil,探討三種顆粒物質與細菌固態培養時,不同的細菌對三種顆粒物質的生長反應。
金黃色葡萄球菌在固態共培養下,第一天時2709a和2711a顆粒物質可提升S.aureus的存活率(起始菌落數: 2709a, 2711a > 1633c, Control),第二天時三種顆粒物質皆使得S.aureus的成長量大於控制組S.aureus (1633c: 101.64 %; 2709a: 120.63 %; 2711a: 135.77 %; Control: 73.59 %),經過四天培養後,實驗組的S. aureus的成長速度皆大於控制組的S. aureus(Day4: 1633c: 192.28 %; 2709a: 240.88 %; 2711a: 266.12 %; Control: 171.57 %),因此四天後,實驗組的S. aureus總面積皆大於控制組的S. aureus,而從個別菌落面積分布結果來看,個別的S. aureus對2709a和2711a的反應較為一致。
表皮葡萄球菌在固態共培養下,第一天時2709a和2711a顆粒物質可提升S.epidermidis的存活率(起始菌落數: 2709a, 2711a > 1633c, Control),接著培養四天後,三種顆粒物質皆使得控制組S. epidermidis的成長量大於實驗組的S. epidermidis (1633c: 119.18 %; 2709a: 108.38 %; 2711a: 125.78 %; Control: 143.43 %),除此之外,控制組的S. epidermidis的成長速度也皆大於實驗組的S. epidermidis(Day4: 1633c: 437.53 %; 2709a: 379.18 %; 2711a: 397.16 %; Control: 519.43 %),因此四天後,控制組的S. epidermidis總面積皆大於實驗組的S. epidermidis,而從個別菌落面積分布結果來看,個別的S. epidermidis對1633c的反應較為一致,而對2709a和2711a的反應較不同。
從擴散環實驗的結果來探討影響細菌生長的原因,從而發現,影響細菌生長並不只是單純的金屬離子,可能是不同化合物效果疊加與氧化物或金屬氧化物奈米粒子等成分存在,雖然金屬/金屬氧化物奈米粒子,或氧化物等在照光的環境下,由於更多自由基被激發,因此毒化細菌的能力會被加強,但即使未被照光,原先在奈米粒子上的自由基也可產生氧化壓毒化細菌,除此之外,透過細菌生長拍攝發現,細菌生長環境如有添加其他物質(如顆粒)會使得菌落形狀改變,而S. aureus菌落形狀對三種顆粒物質的反應相較於S. epidermidis較為劇烈。
接著,為了探討在限制養分的條件下,二種顆粒物質對S. epidermidis的影響,發現在最高濃度(900 g/m3)下,S. epidermidis的生長皆被顆粒物質抑制(1633c: 21.28 %; 2711a: 24.23 %),因此1633c和2711a並未能提供養分給S. epidermidis。最後希望往後能藉由機器學習的方式,快速分辨細菌與顆粒物質與計算細菌成長變化,因此建立一YOLO圖像語義網絡分辨細菌與顆粒物質,細菌分辨成功率達75 %,顆粒物質分辨率達25 %。
本研究結果說明在模擬真實情況下(顆粒沉降於培養在與鼻腔黏膜成分相似的培養盤的細菌上),證實顆粒物質會促進S. aureus生長和抑制S. epidermidis生長,未來希望能運用微流道的設計,探討不同濃度的金屬添加物對細菌的影響,並且使用多變量分析方式,建立資料庫。

This research is aimed at studying the effect of three PMs (1633c, 2709a, 2711a) upon S. aureus and S. epidermidis. PMs represent the emission of coal plant (1633c), and those soil used to be explored a variety of leaking pollution (2709a, 2711a). The growing response of both bacteria upon three bacteria under the solid phase culture is been studied.
Solid Phase Culture of S. aureus: the survival rate of S. aureus was increased by 2709a and 2711a at day 1 (Initial colonies’ count: 2709a, 2711a > 1633c, Control), and the ring proliferation rates of S. aureus of three experimental sets were all higher than control at day 2 (1633c: 101.64 %; 2709a: 120.63 %; 2711a: 135.77 %; Control: 73.59 %). After 4 days culture, the base proliferation rates of S. aureus of three experimental sets were all larger than control (1633c: 192.28 %; 2709a: 240.88 %; 2711a: 266.12 %; Control: 171.57 %). Therefore, the total colonies’ area of S. aureus of three experiment sets were larger than control; however, the results of the distribution of individual colonies’ area, the responses of S. aureus upon 2709a and 2711a were similar.
Solid Phase Culture of S. epidermidis: the survival rate of S. epidermidis was increased by 2709a and 2711a at day 1 (Initial colonies’ count: 2709a, 2711a > 1633c, Control), and the ring proliferation rates of S. epidermidis of three experimental sets were smaller than control at day 4 (1633c: 119.18 %; 2709a: 108.38 %; 2711a: 125.78 %; Control: 143.43 %). Except for the ring proliferation rate, the base proliferation rates of S. epidermidis of three experimental sets were all slower than control (1633c: 437.53 %; 2709a: 379.18 %; 2711a: 397.16 %; Control: 519.43 %). Therefore, the total colonies’ area of S. epidermidis of three experiment sets were smaller than control; however, the results of the distribution of individual colonies’ area, the responses of S. epidermidis upon 1633c were similar.
Diffusion Ring of Metal Ions: The results showed the influenced factors of bacterial growth not only metal ions but also the mixed effect of different compounds or the existence of oxide and metal oxide nanoparticles. Although the poisoning effect of nanoparticles can be enlarged by the light exposure due to more excited radicals, the free radicals originally on nanoparticles are able to generate ROS to poison bacteria. In addition to, by observing the growth of bacteria, the shape of bacteria is changed by the change of living environment (e.g. the addition of particles), and the responses of colonies’ shape of S. aureus upon three PMs were more obvious than S. epidermidis.
Subsequently, in order to discuss under the condition of limited nutrient, the effect of two PMs (1633c and 2711a) upon S. epidermidis. The results revealed that the growth of S. epidermidis was inhibited by 1633c and 2711a (1633c: 21.28 %; 2711a: 24.23 %) at 900 g/m3 of concentration. Therefore, 1633c and 2711a could not provide nutrient to S. epidermidis. Last but not the least, the fast recognition bacteria and PMs and the auto-calculation of the growth of bacteria will be implemented. Thus, the YOLO network for recognizing the bacteria and PMs was built, and the success rate of recognizing bacteria was up to 75 %, and success rate of recognizing PMs was 25 %.
Our research showed that PMs can promote the growth of S. aureus and inhibit the growth of S. epidermidis under the simulated real condition. In the future, by employing the design of micro-channel, the exploration of the effect of different concentrations of metal upon bacteria will be conducted, and utilize the principal component analysis to build the database.
摘要.............................................................I
Abstract.......................................................III
致謝............................................................VI
目錄...........................................................VII
圖目錄..........................................................XI
表目錄........................................................XXII
第1章緒論........................................................1
1.1 介紹 ....................................................1
1.2 實驗目的與規劃............................................2
第2章 文獻回顧...................................................4
2.1 顆粒物質(Particulate Matter, PM)介紹.........................4
2.1.1 PM的來源及分類.............................................5
2.1.2 PM與人類疾病的關聯.........................................8
2.2 微生物族群(Microbiota)......................................10
2.2.1 微生物對人體的影響.........................................10
2.2.2 PM對微生物的影響..........................................21
2.3 微生物菌叢分析方法..........................................28
2.3.1 實驗室規模分析法..........................................28
2.3.2 微流體晶片分析............................................30
2.4 本研究室先前相關研究結果與討論...............................33
2.4.1 不同顆粒物質濃度與S. aureus消長之關係......................33
2.4.2 探討濃度900 g/m3顆粒物質中金屬元素與S. aureus消長關係.......35
第3章 實驗方法與材料.............................................37
3.1 微生物培養方法...............................................39
3.1.1 實驗藥品...................................................39
3.1.2 微生物培養液配置...........................................40
3.1.3 實驗用洋菜膠盤配置.........................................41
3.1.4 細菌培養-控制細菌初始濃度...................................41
3.2 實驗用顆粒物質...............................................42
3.2.1 SRM 1633c-Trace Elements in Coal Fly Ash..................42
3.2.2 SRM 2709a-San Joaquin Soil................................44
3.2.3 SRM 2711a-Montana II Soil.................................46
3.2.4 顆粒物質濃度...............................................48
3.3 顆粒物質對細菌生長的影響......................................49
3.3.1 細菌與顆粒物質固態共培養觀察................................49
3.3.2 半自動Matlab程式觀察細菌面積與數量..........................50
3.3.3 微量離子對細菌的影響.......................................51
3.4 細菌與顆粒物質液態共培養觀察..................................53
3.4.1 點盤法觀察細菌數量.........................................54
第4章 結果與討論.................................................57
4.1 S. aureus與顆粒物質固態共培養的關係...........................57
4.1.1 三種顆粒物質對S. aureus的影響..............................57
4.1.2 SRM 1633c對S. aureus的影響................................61
4.1.3 SRM 2709a對S. aureus的影響................................63
4.1.4 SRM 2711a對S. aureus的影響................................65
4.2 S. epidermidis與顆粒物質固態共培養的關係.....................69
4.2.1 三種顆粒物質對S. epidermidis的影響.........................69
4.2.2 SRM 1633c對S. epidermidis的影響...........................72
4.2.3 SRM 2709a對S. epidermidis的影響..........................74
4.2.4 SRM 2711a對S. epidermidis的影響..........................75
4.3 微量金屬離子對細菌的影響....................................79
4.4 S. aureus和S. epidermidis受顆粒物質影響下固態生長的情況.....84
4.5 S. epidermidis與顆粒物質在限制營養條件下液態共培養的關係.....87
4.5.1 SRM 1633c對S. epidermidis 消長之關係.....................88
4.5.2 SRM 2711a對S. epidermidis 消長之關係.....................89
4.7 顆粒物質對pH影響...........................................94
第5章 結論與未來展望............................................97
5.1 結論.......................................................97
5.2 未來展望....................................................99
5.2.1自動影像分析...............................................99
5.2.2 影像分析操作.............................................100
5.2.3 結果與討論...............................................103
5.3 未來實驗設計...............................................111
5.3.1 利用微流道產生包覆細菌的液滴..............................112
5.3.2 顆粒物質於液滴內細菌的應用................................112
5.3.3 多變量分析...............................................114
參考文獻.......................................................117

Abbott, A. (2016). Scientists bust myth that our bodies have more bacteria than human cells. Nature, 10.
Abreu, N. A., Nagalingam, N. A., Song, Y., Roediger, F. C., Pletcher, S. D., Goldberg, A. N., & Lynch, S. V. J. S. t. m. (2012). Sinus microbiome diversity depletion and Corynebacterium tuberculostearicum enrichment mediates rhinosinusitis. 4(151), 151ra124-151ra124.
Ahmed, A., Ali, A., Mahmoud, D. A., & El‐Fiqi, A. J. J. o. B. M. R. P. A. (2011). Preparation and characterization of antibacterial P2O5–CaO–Na2O–Ag2O glasses. 98(1), 132-142.
Ahn, K. (2014). The role of air pollutants in atopic dermatitis. Journal of Allergy and Clinical Immunology, 134(5), 993-999.
Ananthakrishnan, A. N., McGinley, E. L., Binion, D. G., & Saeian, K. J. I. b. d. (2010). Ambient air pollution correlates with hospitalizations for inflammatory bowel disease: an ecologic analysis. 17(5), 1138-1145.
Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2012). Clearing the air: a review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology, 8(2), 166-175.
Andersson, A. F., Lindberg, M., Jakobsson, H., Bäckhed, F., Nyrén, P., & Engstrand, L. J. P. o. (2008). Comparative analysis of human gut microbiota by barcoded pyrosequencing. 3(7), e2836.
Apte, J. S., Brauer, M., Cohen, A. J., Ezzati, M., & Pope III, C. A. (2018). Ambient PM2. 5 reduces global and regional life expectancy. Environmental Science & Technology Letters, 5(9), 546-551.
Apte, J. S., Marshall, J. D., Cohen, A. J., & Brauer, M. (2015). Addressing global mortality from ambient PM2. 5. Environmental science & technology, 49(13), 8057-8066.
Armougom, F., Henry, M., Vialettes, B., Raccah, D., & Raoult, D. (2009). Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PloS one, 4(9), e7125.
Arnold, I. C., Dehzad, N., Reuter, S., Martin, H., Becher, B., Taube, C., & Müller, A. (2011). Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. The Journal of clinical investigation, 121(8), 3088-3093.
Atkinson, R. W., Fuller, G. W., Anderson, H. R., Harrison, R. M., & Armstrong, B. (2010). Urban ambient particle metrics and health: a time-series analysis. Epidemiology, 501-511.
Azam, A., Ahmed, A. S., Oves, M., Khan, M. S., Habib, S. S., & Memic, A. (2012). Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International journal of nanomedicine, 7, 6003.
Bakker, E. P., & Mangerich, W. E. J. J. o. b. (1981). Interconversion of components of the bacterial proton motive force by electrogenic potassium transport. 147(3), 820-826.
Biedermann, L., Zeitz, J., Mwinyi, J., Sutter-Minder, E., Rehman, A., Ott, S. J., . . . Scharl, M. J. P. o. (2013). Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. 8(3), e59260.
Biswas, K., Hoggard, M., Jain, R., Taylor, M. W., & Douglas, R. G. J. F. i. m. (2015). The nasal microbiota in health and disease: variation within and between subjects. 6, 134.
Boase, S., Foreman, A., Cleland, E., Tan, L., Melton-Kreft, R., Pant, H., . . . Wormald, P.-J. (2013a). The microbiome of chronic rhinosinusitis: culture, molecular diagnostics and biofilm detection. BMC infectious diseases, 13(1), 210.
Boase, S., Foreman, A., Cleland, E., Tan, L., Melton-Kreft, R., Pant, H., . . . Wormald, P.-J. J. B. i. d. (2013b). The microbiome of chronic rhinosinusitis: culture, molecular diagnostics and biofilm detection. 13(1), 210.
Booth, I. R. J. M. r. (1985). Regulation of cytoplasmic pH in bacteria. 49(4), 359.
Brown, J. M., & Hazen, S. L. (2017). Targeting of microbe-derived metabolites to improve human health: The next frontier for drug discovery. Journal of Biological Chemistry, jbc. R116. 765388.
Brown, J. S., Gordon, T., Price, O., & Asgharian, B. (2013). Thoracic and respirable particle definitions for human health risk assessment. Particle and fibre toxicology, 10(1), 12.
Brown, L. M. (2000). Helicobacter pylori: epidemiology and routes of transmission. Epidemiologic reviews, 22(2), 283-297.
Buddington, R., & Sangild, P. T. (2011). companion animals symposium: Development of the mammalian gastrointestinal tract, the resident microbiota, and the role of diet in early life 1. Journal of animal science, 89(5), 1506-1519.
Byrd, A. L., Belkaid, Y., & Segre, J. A. (2018). The human skin microbiome. Nature Reviews Microbiology, 16(3), 143.
Byrd, A. L., Deming, C., Cassidy, S. K., Harrison, O. J., Ng, W.-I., Conlan, S., . . . medicine, N. C. S. P. J. S. t. (2017). Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. 9(397), eaal4651.
Byrd, A. L., Deming, C., Cassidy, S. K., Harrison, O. J., Ng, W.-I., Conlan, S., . . . Program, N. C. S. (2017). Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Science translational medicine, 9(397), eaal4651.
Chen, Y.-C., Hsu, C.-Y., Lin, S.-L., Chang-Chien, G.-P., Chen, M.-J., Fang, G.-C., & Chiang, H.-C. (2015). Characteristics of concentrations and metal compositions for PM2. 5 and PM2. 5–10 in Yunlin County, Taiwan during air quality deterioration. Aerosol Air Qual. Res, 15, 2571-2583.
Cheung, K., Daher, N., Kam, W., Shafer, M. M., Ning, Z., Schauer, J. J., & Sioutas, C. (2011). Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10–2.5) in the Los Angeles area. Atmospheric Environment, 45(16), 2651-2662.
Clayton, T. A., Baker, D., Lindon, J. C., Everett, J. R., & Nicholson, J. K. J. P. o. t. N. A. o. S. (2009). Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. 106(34), 14728-14733.
Cogen, A., Nizet, V., & Gallo, R. (2008). Skin microbiota: a source of disease or defence? British Journal of Dermatology, 158(3), 442-455.
Cox, M. J., Allgaier, M., Taylor, B., Baek, M. S., Huang, Y. J., Daly, R. A., . . . Fujimura, K. E. J. P. o. (2010). Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. 5(6), e11044.
Das, S. (2014). Microbial biodegradation and bioremediation: Elsevier.
de Steenhuijsen Piters, W. A., Heinonen, S., Hasrat, R., Bunsow, E., Smith, B., Suarez-Arrabal, M.-C., . . . medicine, c. c. (2016). Nasopharyngeal microbiota, host transcriptome, and disease severity in children with respiratory syncytial virus infection. 194(9), 1104-1115.
Delima, S. L., McBride, R. K., Preshaw, P. M., Heasman, P. A., & Kumar, P. S. J. J. o. c. m. (2010). Response of subgingival bacteria to smoking cessation. 48(7), 2344-2349.
Dertinger, S. K., Chiu, D. T., Jeon, N. L., & Whitesides, G. M. J. A. C. (2001). Generation of gradients having complex shapes using microfluidic networks. 73(6), 1240-1246.
Dewhirst, F. E., Chen, T., Izard, J., Paster, B. J., Tanner, A. C., Yu, W.-H., . . . Wade, W. G. (2010). The human oral microbiome. Journal of bacteriology, 192(19), 5002-5017.
Dicksved, J., Halfvarson, J., Rosenquist, M., Järnerot, G., Tysk, C., Apajalahti, J., . . . Jansson, J. K. (2008a). Molecular analysis of the gut microbiota of identical twins with Crohn's disease. The ISME journal, 2(7), 716.
Dicksved, J., Halfvarson, J., Rosenquist, M., Järnerot, G., Tysk, C., Apajalahti, J., . . . Jansson, J. K. J. T. I. j. (2008b). Molecular analysis of the gut microbiota of identical twins with Crohn's disease. 2(7), 716.
Elinav, E., Strowig, T., Kau, A. L., Henao-Mejia, J., Thaiss, C. A., Booth, C. J., . . . Gordon, J. I. (2011). NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell, 145(5), 745-757.
Epstein, W. J. F. m. r. (1986). Osmoregulation by potassium transport in Escherichia coli. 2(1-2), 73-78.
Felzenszwalb, P. F., Girshick, R. B., McAllester, D., Ramanan, D. J. I. t. o. p. a., & intelligence, m. (2009). Object detection with discriminatively trained part-based models. 32(9), 1627-1645.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Nature Reviews Microbiology, 9(4), 244.
Guarieiro, L. L. N., & Guarieiro, A. L. N. (2013). Vehicle emissions: what will change with use of biofuel? In Biofuels-Economy, Environment and Sustainability: InTech.
Gupta, K., Singh, R., Pandey, A., & Pandey, A. (2013). Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli. Beilstein journal of nanotechnology, 4, 345.
Hidaka, T., Ogawa, E., Kobayashi, E. H., Suzuki, T., Funayama, R., Nagashima, T., . . . Okuyama, R. (2017). The aryl hydrocarbon receptor AhR links atopic dermatitis and air pollution via induction of the neurotrophic factor artemin. Nature immunology, 18(1), 64.
Huang, Y. J., Nelson, C. E., Brodie, E. L., DeSantis, T. Z., Baek, M. S., Liu, J., . . . Immunology, C. (2011). Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. 127(2), 372-381. e373.
Iwase, T., Uehara, Y., Shinji, H., Tajima, A., Seo, H., Takada, K., . . . Mizunoe, Y. J. N. (2010). Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. 465(7296), 346.
James G. Mitchell. (2002). The Energetics and Scaling of Search Strategies in Bacteria. 160(6), 727-740. doi:10.1086/343874
Jeon, H.-J., Yi, S.-C., & Oh, S.-G. (2003). Preparation and antibacterial effects of Ag–SiO2 thin films by sol–gel method. Biomaterials, 24(27), 4921-4928.
Jie, Z., Xia, H., Zhong, S.-L., Feng, Q., Li, S., Liang, S., . . . Zhao, H. J. N. c. (2017). The gut microbiome in atherosclerotic cardiovascular disease. 8(1), 845.
Justice, S. S., Hung, C., Theriot, J. A., Fletcher, D. A., Anderson, G. G., Footer, M. J., & Hultgren, S. J. (2004). Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. 101(5), 1333-1338. doi:10.1073/pnas.0308125100 %J Proceedings of the National Academy of Sciences of the United States of America
Kaplan, G. G., Hubbard, J., Korzenik, J., Sands, B. E., Panaccione, R., Ghosh, S., . . . Villeneuve, P. J. J. T. A. j. o. g. (2010). The inflammatory bowel diseases and ambient air pollution: a novel association. 105(11), 2412.
Kaplan, G. G., Szyszkowicz, M., Fichna, J., Rowe, B. H., Porada, E., Vincent, R., . . . Storr, M. J. P. o. (2012). Non-specific abdominal pain and air pollution: a novel association. 7(10), e47669.
Ketseridis, G., Hahn, J., Jaenicke, R., & Junge, C. J. A. E. (1976). The organic constituents of atmospheric particulate matter. 10(8), 603-610.
Kiehl, J. (1995). Modeling geographycal and seasonal forcing due to aerosols. Aerosol forcing of climate, 281-296.
Kim, H. J., Li, H., Collins, J. J., & Ingber, D. E. J. P. o. t. N. A. o. S. (2016). Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. 113(1), E7-E15.
Kim, K.-H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136-143. doi:http://dx.doi.org/10.1016/j.envint.2014.10.005
Koch, R. (1880). Investigations into the etiology of traumatic infective diseases (Vol. 88): New Sydenham Society.
Kuczynski, J., Lauber, C. L., Walters, W. A., Parfrey, L. W., Clemente, J. C., Gevers, D., & Knight, R. J. N. R. G. (2012). Experimental and analytical tools for studying the human microbiome. 13(1), 47.
Kumar, P. S., Matthews, C. R., Joshi, V., de Jager, M., Aspiras, M. J. I., & immunity. (2011). Tobacco smoking affects bacterial acquisition and colonization in oral biofilms. IAI. 05371-05311.
Kwon, E. E., & Castaldi, M. J. (2012). Mechanistic understanding of polycyclic aromatic hydrocarbons (PAHs) from the thermal degradation of tires under various oxygen concentration atmospheres. Environmental science & technology, 46(23), 12921-12926.
Lathrop, S. K., Bloom, S. M., Rao, S. M., Nutsch, K., Lio, C.-W., Santacruz, N., . . . Hsieh, C.-S. (2011). Peripheral education of the immune system by colonic commensal microbiota. Nature, 478(7368), 250.
Lester, G. J. J. o. b. (1958). Requirement for potassium by bacteria. 75(4), 426.
Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences, 102(31), 11070-11075.
Li, L., Mustafi, D., Fu, Q., Tereshko, V., Chen, D. L., Tice, J. D., & Ismagilov, R. F. J. P. o. t. N. A. o. S. (2006). Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins. 103(51), 19243-19248.
Lipovsky, A., Gedanken, A., Nitzan, Y., Lubart, R. J. L. i. s., & medicine. (2011). Enhanced inactivation of bacteria by metal‐oxide nanoparticles combined with visible light irradiation. 43(3), 236-240.
Lipovsky, A., Nitzan, Y., Gedanken, A., & Lubart, R. J. N. (2011). Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury. 22(10), 105101.
Man, W. H., de Steenhuijsen Piters, W. A., & Bogaert, D. J. N. R. M. (2017). The microbiota of the respiratory tract: gatekeeper to respiratory health. 15(5), 259.
Marcazzan, G. M., Vaccaro, S., Valli, G., & Vecchi, R. (2001). Characterisation of PM10 and PM2. 5 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment, 35(27), 4639-4650.
Marchesi, J. R., Adams, D. H., Fava, F., Hermes, G. D., Hirschfield, G. M., Hold, G., . . . Tuohy, K. M. (2016). The gut microbiota and host health: a new clinical frontier. Gut, 65(2), 330-339.
Maron, P.-A., Ranjard, L., Mougel, C., & Lemanceau, P. J. M. e. (2007). Metaproteomics: a new approach for studying functional microbial ecology. 53(3), 486-493.
Mauderly, J. L. (1994). Toxicological and epidemiological evidence for health risks from inhaled engine emissions. Environmental health perspectives, 102(suppl 4), 165-171.
Menzel, D. W., & Ryther, J. H. (1964). THE COMPOSITION OF PARTICULATE ORGANIC MATTER IN THE WESTERN NORTH ATLANTIC 1. Limnology and Oceanography, 9(2), 179-186.
Miettinen, I. T., Vartiainen, T., & Martikainen, P. J. J. A. E. M. (1997). Phosphorus and bacterial growth in drinking water. 63(8), 3242-3245.
Newby, D. E., Mannucci, P. M., Tell, G. S., Baccarelli, A. A., Brook, R. D., Donaldson, K., . . . Graham, I. (2014). Expert position paper on air pollution and cardiovascular disease. European heart journal, 36(2), 83-93.
Pérez, N., Pey, J., Cusack, M., Reche, C., Querol, X., Alastuey, A., & Viana, M. (2010). Variability of particle number, black carbon, and PM10, PM2. 5, and PM1 levels and speciation: influence of road traffic emissions on urban air quality. Aerosol Science and Technology, 44(7), 487-499.
Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: a review. Atmospheric Environment, 77, 78-97.
Parlesak, A., Haller, D., Brinz, S., Baeuerlein, A., & Bode, C. J. S. j. o. i. (2004). Modulation of cytokine release by differentiated CACO‐2 cells in a compartmentalized coculture model with mononuclear leucocytes and nonpathogenic bacteria. 60(5), 477-485.
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., . . . Yamada, T. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59.
Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Mantilla, E., & Ruiz, C. R. (2001). Monitoring of PM10 and PM2. 5 around primary particulate anthropogenic emission sources. Atmospheric Environment, 35(5), 845-858.
Robinson, C. J., Bohannan, B. J., & Young, V. B. (2010). From structure to function: the ecology of host-associated microbial communities. Microbiology and Molecular Biology Reviews, 74(3), 453-476.
Round, J. L., Lee, S. M., Li, J., Tran, G., Jabri, B., Chatila, T. A., & Mazmanian, S. K. (2011). The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science, 1206095.
Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature reviews immunology, 9(5), 313.
Sawai, J. (2003). Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. Journal of microbiological methods, 54(2), 177-182.
Schroeder, B. O., & Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nature medicine, 22(10), 1079.
Schroeder, B. O., & Bäckhed, F. J. N. m. (2016). Signals from the gut microbiota to distant organs in physiology and disease. 22(10), 1079.
Shah, P., Fritz, J. V., Glaab, E., Desai, M. S., Greenhalgh, K., Frachet, A., . . . Seguin-Devaux, C. J. N. c. (2016). A microfluidics-based in vitro model of the gastrointestinal human–microbe interface. 7, 11535.
Shi, Y., Tyson, G. W., & DeLong, E. F. J. N. (2009). Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. 459(7244), 266.
Shreiner, A. B., Kao, J. Y., & Young, V. B. (2015). The gut microbiome in health and in disease. Current opinion in gastroenterology, 31(1), 69.
Simoneit, B. R., Kobayashi, M., Mochida, M., Kawamura, K., Lee, M., Lim, H. J., . . . Komazaki, Y. (2004). Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE‐Asia campaign. Journal of Geophysical Research: Atmospheres, 109(D19).
Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., . . . Mohamad, D. J. N.-M. L. (2015). Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. 7(3), 219-242.
Spor, A., Koren, O., & Ley, R. (2011). Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology, 9(4), 279.
Spor, A., Koren, O., & Ley, R. J. N. R. M. (2011). Unravelling the effects of the environment and host genotype on the gut microbiome. 9(4), 279.
Srimuruganandam, B., & Nagendra, S. S. (2012). Source characterization of PM10 and PM2. 5 mass using a chemical mass balance model at urban roadside. Science of the total environment, 433, 8-19.
Sundaresan, A., Bhargavi, R., Rangarajan, N., Siddesh, U., & Rao, C. J. P. R. B. (2006). Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. 74(16), 161306.
Teo, S. M., Mok, D., Pham, K., Kusel, M., Serralha, M., Troy, N., . . . microbe. (2015). The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. 17(5), 704-715.
Torelli, A., Wolf, I., & Gretz, N. J. S. r. (2018). AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques. 8(1), 7302.
Turnbaugh, P. J., Bäckhed, F., Fulton, L., & Gordon, J. I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell host & microbe, 3(4), 213-223.
Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027.
Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., & Gordon, J. I. (2009). The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Science translational medicine, 1(6), 6ra14-16ra14.
Tuson, H. H., & Weibel, D. B. J. S. m. (2013). Bacteria–surface interactions. 9(17), 4368-4380.
Victoria, F. N., Radatz, C. S., Sachini, M., Jacob, R. G., Perin, G., da Silva, W. P., & Lenardão, E. J. (2009). KF/Al2O3 and PEG-400 as a recyclable medium for the selective α-selenation of aldehydes and ketones. Preparation of potential antimicrobial agents. Tetrahedron Letters, 50(49), 6761-6763.
Wade, W. G. (2013). The oral microbiome in health and disease. Pharmacological research, 69(1), 137-143.
Xing, Y.-F., Xu, Y.-H., Shi, M.-H., & Lian, Y.-X. (2016). The impact of PM2. 5 on the human respiratory system. Journal of thoracic disease, 8(1), E69.
Zhang, W., Li, Y., Niu, J., & Chen, Y. J. L. (2013). Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. 29(15), 4647-4651.
Zhao, Q., Liu, Y., Wang, C., Wang, S. J. D., & Materials, R. (2007). Bacterial adhesion on silicon-doped diamond-like carbon films. 16(8), 1682-1687.
Zobell, C. E. J. J. o. b. (1943). The effect of solid surfaces upon bacterial activity. 46(1), 39.
郭昺澤. (2018). 空氣汙染物對人體呼吸道菌叢影響. (碩士), 國立清華大學, 新竹市. Retrieved from https://hdl.handle.net/11296/3wbtsc

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *