帳號:guest(18.119.117.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李柔萱
作者(外文):Li, Jou-Hsuan
論文名稱(中文):溫度梯度對銅/銦/銅對稱結構中介金屬化合物成長及微結構之影響
論文名稱(外文):Effect of temperature gradient on microstructure evolution and the growth of intermetallic compound in Cu/In/Cu symmetric structure
指導教授(中文):歐陽汎怡
指導教授(外文):Ouyang, Fan-Yi
口試委員(中文):陳智
吳子嘉
口試委員(外文):Chen, Chin
Wu, Albert T.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011507
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:87
中文關鍵詞:熱遷移介金屬化合物
外文關鍵詞:ThermomigrationIMC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:54
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了因應電子元件微型化及追求更高效能的需求,三維立體封裝技術(3D IC)的發展逐漸受到注目;然而3D IC中接點尺寸比起傳統覆晶封裝小了一個數量級,因此只要銲錫層中存在一些微溫度差,就會建立起一巨大的溫度梯度。在3D IC接合中,為了降低高溫製程中可能造成的元件熱損害,因此低溫接合技術中的固-液相互擴散接合(Solid-liquid interdiffusion bonding)熱壓法成為具有前景的趨勢之一;然而,半導體接合製程中可能會經歷多次迴焊(Reflow)過程,而熱壓接合的使用可能使焊料(solder)層在接合過程中建立一溫度梯度,可能造成不平衡的原子擴散,使得介金屬化合物在迴焊過程中出現非對稱成長情形,造成元件可靠度問題。
此外,在SLID接合材料中,由於銦材料具有低熔點 (156.6 °C)的特性,而銅由於具有較高熔點並且為廣泛運用的金屬墊層(UBM)材料,因此本研究採用銅/銦/銅對稱結構在220 °C且平均溫度梯度為68 °C/cm下的不同迴焊時間過程中,銅銦界面反應與銅銦介金屬化合物之生長情形。在熱遷移測試後,試片冷端的Cu11In9介金屬化合物相較於熱端來的更厚,我們推論是由於溫度梯度驅動力使得銅原子傾向由熱端往冷端遷移,造成Cu11In9介金屬化合物的不對稱成長以及熱端Cu UBM更高的消耗速率。文中探討了溫度梯度下Cu11In9介金屬化合物的成長機制,並計算出銅在液態銦中的DQ*值。
For the demand of miniaturization and higher performance of electronic device, the development of three-dimensional integrated circuit (3D IC) has become a major trend in electronic packaging technology;however, the joint size in 3D IC is an order smaller than the solder bump size in flip chip, a small temperature difference in solder may establish a huge temperature gradient across the joint.To avoid the thermal damage problem induced by bonding process in 3D IC, the low temperature solid-liquid interdiffusion bonding was used in 3D IC process.The temperature gradient may be existed during the bonding process, which may induce an atomic flux in the molten-state solder leading the aymmetric growth of intermetallic compounds (IMCs).
Indium and copper was used in SLID bonding due to indium has low melting temperature(156.6 °C) and copper was widely used in UBM material;consequently, we use the Cu/In/Cu symmetric structure under a temperature gradient of 68 °C/cm at 220 °C to study the interfacial reaction between Cu/ liquid In and the growth of IMCs during different reflowing time.As compared to isothermal process, the dissolving of Cu11In9 at hot end and the thicker thickness of Cu11In9 at cold end were observed in thermomigration process.We proposed that the asymmetric growth behavior of Cu11In9 is due to the driving force of thermal gradient to drive the Cu atoms to diffuse to the cold end.The corresponding growth mechanism of Cu11In9 IMC in thermomigration process was discussed, and the DQ* value of Cu in In was calculated.
摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xiv
一、前言 1
二、文獻回顧 4
2.1電子封裝技術的演進 4
2.2熱遷移 8
2.2.1焦耳熱效應 8
2.2.2焦耳熱誘發接點內之溫度梯度 10
2.2.3熱遷移理論 15
2.2.4傳統鉛錫中的熱遷移 18
2.2.5無鉛銲錫中的熱遷移 23
2.2.6金屬墊層(Under Bump Metallurgy, UBM) 材料的熱遷移 28
2.3銅銦界面反應 31
2.4動機 38
三、實驗方法與步驟 39
3.1 金屬材料來源及前處理 39
3.2 實驗樣品的製備 40
3.3 實驗設置 40
3.3.1銅/銦/銅熱遷移實驗設置 40
3.3.2銅/銦/銅等溫實驗設置 41
3.4 反應後試片的處理、觀察及分析 41
3.4.1試片之金相處理 41
3.4.2 試片微結構觀察及分析 42
3.5 ANSYS WORKBENCH 有限元素分析法模擬溫度梯度分布 43
四、結果 47
4.1 Ansys workbench模擬Cu/In/Cu溫度梯度分佈 47
4.2等溫下Cu/In/Cu的界面反應 50
4.3溫度梯度下Cu/In/Cu的界面反應 57
五、討論 66
5.1 Cu11In9介金屬化合物在溫度梯度下的成長機制 66
5.2計算銅在液態銦中的熱傳送值(Q*) 78
六、結論 83
引用文獻 84
[1] K. N. Tu, "Reliability challenges in 3D IC packaging technology," Microelectronics Reliability, vol. 51, no. 3, pp. 517-523, 2011.
[2] F.-Y. Ouyang and W.-C. Jhu, "Comparison of thermomigration behaviors between Pb-free flip chip solder joints and microbumps in three dimensional integrated circuits: Bump height effect," Journal of Applied Physics, vol. 113, no. 4, 2013.
[3] D. Yang, Y. C. Chan, B. Y. Wu, and M. Pecht, "Electromigration and thermomigration behavior of flip chip solder joints in high current density packages," Journal of Materials Research, vol. 23, no. 9, pp. 2333-2339, 2011.
[4] H.-Y. Chen and C. Chen, "Thermomigration of Cu–Sn and Ni–Sn intermetallic compounds during electromigration in Pb-free SnAg solder joints," Journal of Materials Research, vol. 26, no. 8, pp. 983-991, 2011.
[5] C. Chen, H.-Y. Hsiao, Y.-W. Chang, F. Ouyang, and K. N. Tu, "Thermomigration in solder joints," Materials Science and Engineering: R: Reports, vol. 73, no. 9-10, pp. 85-100, 2012.
[6] V. N. Le, L. Benabou, V. Etgens, and Q. B. Tao, "Finite element analysis of the effect of process-induced voids on the fatigue lifetime of a lead-free solder joint under thermal cycling," Microelectronics Reliability, vol. 65, pp. 243-254, 2016.
[7] H. Liu, G. Salomonsen, K. Wang, K. E. Aasmundtveit, and N. Hoivik, "Wafer-Level Cu/Sn to Cu/Sn SLID-Bonded Interconnects With Increased Strength," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 9, pp. 1350-1358, 2011.
[8] J.-Y. Chang, R.-S. Cheng, K.-S. Kao, T.-C. Chang, and T.-H. Chuang, "Reliable Microjoints Formed by Solid–Liquid Interdiffusion (SLID) Bonding Within a Chip-Stacking Architecture," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 6, pp. 979-984, 2012.
[9] T. A. Tollefsen, A. Larsson, O. M. Løvvik, and K. Aasmundtveit, "Au-Sn SLID Bonding—Properties and Possibilities," Metallurgical and Materials Transactions B, vol. 43, no. 2, pp. 397-405, 2011.
[10] L. Bernstein, "Semiconductor Joning by the Solid-Liquid-Interdiffusion(SLID) Process I. The systems Ag-In, Au-In, and Cu-In," Journal of The Electrochemical Society, vol. 113, no. 12, p. 1282, 1966.
[11] Y. Tsutsui et al., "Size effect of Ag nanoparticles on laser sintering and wire bondability," in Proceedings - Electronic Components and Technology Conference, 2010, pp. 1870-1876.
[12] J. H. Lau, "Recent Advances and New Trends in Flip Chip Technology," Journal of Electronic Packaging, vol. 138, no. 3, 2016.
[13] J. H. Lau, "Overview and outlook of through‐silicon via (TSV) and 3D integrations," Microelectronics International, vol. 28, no. 2, pp. 8-22, 2011.
[14] C. Soret, "Sur l'état d'équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homogène dont deux parties sont portées à des températures différentes," (in French), Archives des sciences physiques et naturelles [de la] Bibliothèque Universelle, vol. 3, 1879.
[15] C. Ludwig, K. K. H.-u. Staatsdruckerei, K. A. d. W. i. Wien, and Braumüller, Diffusion zwischen ungleich erwärmten Orten gleich zusammengesetzter Lösung. Aus der K.K. Hof- und Staatsdruckerei, in Commission bei W. Braumüller, Buchhändler des K.K. Hofes und der K. Akademie der Wissenschaften, 1856.
[16] P. Shewmon, "The thermal diffusion of carbon in α and γ iron," Acta Metallurgica, vol. 8, no. 9, pp. 605-611, 1960/09/01/ 1960.
[17] M.-Y. Guo, C. K. Lin, C. Chen, and K. N. Tu, "Asymmetrical growth of Cu6Sn5 intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints," Intermetallics, vol. 29, pp. 155-158, 2012/10/01/ 2012.
[18] H. Ye, C. Basaran, and D. Hopkins, "Thermomigration in Pb–Sn solder joints under joule heating during electric current stressing," Applied Physics Letters, vol. 82, no. 7, pp. 1045-1047, 2003.
[19] Y.-P. Su and F.-Y. Ouyang, The growth of Ag3Sn intermetallic compound under a temperature gradient. 2014, pp. 634-639.
[20] F.-Y. Ouyang, W.-C. Jhu, and T.-C. Chang, "Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits," Journal of Alloys and Compounds, vol. 580, pp. 114-119, 2013/12/15/ 2013.
[21] F.-Y. Ouyang and C. L. Kao, "In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn-3Ag-0.5Cu flip chip solder joints," Journal of Applied Physics, vol. 110, no. 12, 2011.
[22] F.-Y. Ouyang, K. N. Tu, Y.-S. Lai, and A. M. Gusak, "Effect of entropy production on microstructure change in eutectic SnPb flip chip solder joints by thermomigration," Applied Physics Letters, vol. 89, no. 22, 2006.
[23] A. T. Huang, A. M. Gusak, K. N. Tu, and Y.-S. Lai, "Thermomigration in SnPb composite flip chip solder joints," Applied Physics Letters, vol. 88, no. 14, 2006.
[24] Y. C. Chuang and C. Y. Liu, Thermomigration in eutectic SnPb alloy. 2006, pp. 174105-174105.
[25] L. Ding, Y. Tao, and Y. Wu, "Thermomigration in Sn58Bi solder joints at low ambient temperature," in 2011 12th International Conference on Electronic Packaging Technology and High Density Packaging, 2011, pp. 1-5.
[26] H.-Y. Hsiao and C. Chen, "Thermomigration in Pb-free SnAg solder joint under alternating current stressing," Applied Physics Letters, vol. 94, no. 9, 2009.
[27] H.-Y. Chen, C. Chen, and K.-N. Tu, "Failure induced by thermomigration of interstitial Cu in Pb-free flip chip solder joints," Applied Physics Letters, vol. 93, no. 12, 2008.
[28] H. Huntington and H. J. E. o. P. Aaronson, "Diffusion," vol. 2, p. 255, 1973.
[29] Z. Bahari, E. Dichi, B. Legendre, and J. Dugué, "The equilibrium phase diagram of the copper–indium system: a new investigation," Thermochimica Acta, vol. 401, no. 2, pp. 131-138, 2003/05/19/ 2003.
[30] L.-H. Su, Y.-W. Yen, C.-C. Lin, and S.-W. Chen, "Interfacial reactions in molten Sn/Cu and molten In/Cu couples," Metallurgical and Materials Transactions B, vol. 28, no. 5, pp. 927-934, 1997/10/01 1997.
[31] C. L. Yu, S. S. Wang, and T. H. Chuang, "Intermetallic compounds formed at the interface between liquid indium and copper substrates," Journal of Electronic Materials, vol. 31, no. 5, pp. 488-493, 2002/05/01 2002.
[32] K. A. Lindahl, J. J. Moore, D. L. Olson, R. Noufi, and B. Lanning, "Quantitative investigation of copper/indium multilayer thin film reactions," Thin Solid Films, vol. 290-291, pp. 518-524, 1996/12/15/ 1996.
[33] P. T. Vianco, A. C. Kilgo, and R. Grant, "Solid state intermetallic compound layer growth between copper and hot dipped indium coatings," Journal of Materials Science, vol. 30, no. 19, pp. 4871-4878, 1995/10/01 1995.
[34] D.-G. Kim, C.-Y. Lee, and S.-B. Jung, "Interfacial reactions and intermetallic compound growth between indium and copper," Journal of Materials Science: Materials in Electronics, vol. 15, no. 2, pp. 95-98, 2004/02/01 2004.
[35] I. Manna, S. Bader, W. Gust, and B. Predel, "Interdiffusion Between in Layer and Bulk Cu or Cu-In Alloy," physica status solidi (a), vol. 119, no. 1, pp. K9-K13, 1990/05/16 1990.
[36] S.-W. Chen, T.-C. Yang, J.-M. Lin, and T.-Y. Huang, Interfacial reactions in the Co/In/Cu and Ni/In/Cu samples. 2019.
[37] Y. Shan Chiu and C. Robert Kao, Microstructure Evolution of Cu/In/Cu Joints After Solid-Liquid Interdiffusion. 2018, pp. 890-895.
[38] S. Sommadossi, W. Gust, and E. J. Mittemeijer, Phase characterisation and kinetic behaviour of diffusion soldered Cu/In/Cu interconnections. 2003.
[39] Y. Tian, C. Hang, X. Zhao, B. Liu, N. Wang, and C. Wang, "Phase transformation and fracture behavior of Cu/In/Cu joints formed by solid–liquid interdiffusion bonding," Journal of Materials Science: Materials in Electronics, vol. 25, no. 9, pp. 4170-4178, 2014/09/01 2014.
[40] C. R. Kao, Diffusion and Reactions Between Cu and Pb-In Alloys: A Theoretical and Experimental Study. University of Wisconsin--Madison, 1994.
[41] http://www.efunda.com/materials/elements/element_info.cfm?Element_ID=In.
[42] http://hyperphysics.phy-astr.gsu.edu/hbase/Tables/thrcn.html.
[43] http://www.efunda.com/materials/elements/TC_Table.cfm?Element_ID=Si
[44] M. Smalc, G. Shives, G. Chen, S. Guggari, J. Norley, and I. I. I. R. A. Reynolds, "Thermal Performance of Natural Graphite Heat Spreaders," no. 42002, pp. 79-89, 2005.
[45] F. Weibke and H. Eggers, "Das Zustandsdiagramm des Systems Kupfer-Indium," Zeitschrift für anorganische und allgemeine Chemie, vol. 220, no. 3, pp. 273-292, 1934/11/17 1934.
[46] H.-Y. Hsiao and C. Chen, Thermomigration in flip-chip SnPb solder joints under alternating current stressing. 2007.
[47] F.-Y. Ouyang, K. N. Tu, Y.-S. Lai, and A. Gusak, Effect of entropy production on microstructure change in eutectic SnPb flip chip solder joints by thermomigration. 2006, pp. 221906-221906.
[48] Y. C. Chuang and C. Y. Liu, The Effect of Thermomigration on Phase Coarsening in a Eutectic SnPb Alloy. 2007, pp. 1495-1500.
[49] F.-Y. Ouyang and C. L. Kao, In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn-3Ag-0.5Cu flip chip solder joints. 2011.
[50] H.-Y. Hsiao and C. Chen, Thermomigration in Pb-free SnAg solder joint under alternating current stressing. 2009, pp. 092107-092107.
[51] G. J. van Gurp, P. J. de Waard, and F. J. du Chatenier, Thermomigration in indium and indium alloy films. 1985, pp. 728-735.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *