帳號:guest(18.118.2.111)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):康維仁
作者(外文):Kang, Wei-Zen
論文名稱(中文):以實驗規劃法及單因子法(氮氣流量)優化氮化鉬薄膜製程
論文名稱(外文):Optimization of the Deposition Processing of MoNx Thin Films by Design of Experiment and Single Variable (Nitrogen flow rate) Methods
指導教授(中文):黃嘉宏
指導教授(外文):Huang, Jia-Hong
口試委員(中文):翁明壽
吳芳賓
口試委員(外文):Wong, Ming-Show
Wu, Fan-Bean
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011505
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:88
中文關鍵詞:氮化鉬田口實驗規劃法反應式濺鍍
外文關鍵詞:Molybdenum nitrideThe Taguchi design of experiment methodReactive sputtering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:264
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目的是先以田口氏實驗規劃法針對非平衡磁控濺鍍系統中氮化鉬薄膜製程進行優化和找出敏感參數,再利用單變數實驗研究敏感參數對於性質與結構的影響。優化過程是以反應式濺鍍系統中四個製程參數:氮氣流量、基板溫度、基板偏壓以及基座轉速作為控制變因,並以硬度和電阻作為材料優化的指標。鍍製完畢後,以平均值分析(ANOM)與變異數分析(ANOVA)找出敏感參數與優化條件,最後執行驗證實驗評估田口實驗對於材料優化的可行性。由實驗結果得知,氮化鉬薄膜的硬度與電阻皆位於所預期的優化範圍內,再經由統計分析發現氮氣流量對於硬度與電阻皆有相當大的影響。因此以氮氣流量作為單變數研究的變因,並以確認實驗中優化電阻率參數作為基礎參數,探討氮氣流量的變化對薄膜性質與結構的影響。結果顯示氮化鉬薄膜中殘留的金屬鉬對於硬度、電阻和殘留應力有很大的影響。並且發現氮化鉬薄膜織構的演變與最低能量面 (200) 和金屬基材導引效應有關。本實驗中發現,在金屬鉬薄膜中通入少量的氮氣條件下會產生大量的雙晶結構,並展現出相當高的硬度值(~13.0 GPa),雙晶產生的原因可能為濺鍍製程為一種淬火行為,高能量的入射粒子於低溫基材上成膜;且通入的氮可能會在金屬中形成間隙缺陷,造成應力來源,誘發變形雙晶產生。
In this study, the Taguchi design of experiment (DOE) was performed to optimize the deposition process of MoNx thin films using unbalanced magnetron sputtering (UBMS). Further single-variable experiments based on the sensitive parameter derived from the Taguchi experiments were conducted to investigate the effect of the parameter on the phase evolution, structure, and properties of the MoNx thin films. The MoNx thin films were deposited using a DC-UBMS system. Four controlling factors: N2 flow rate, substrate bias voltage, substrate temperature, and the substrate rotational speed were selected in the Taguchi L9 matrix experiment. Electrical resistivity and hardness were chosen as the quality characteristics for the optimization. Analysis of variance (ANOVA) and analysis of mean (ANOM) were performed to identify the sensitive parameters and the optimum conditions. The confirmation test results for the optimizations of hardness (SH) and electrical resistivity (SR) were within the predicted ranges, and therefore the feasibility and reliability of the Taguchi optimization were successfully verified. The results of ANOVA showed that nitrogen flow rate was the most sensitive factor. The optimum condition for the electrical resistivity was chosen to be the reference for the single-variable experiments, and nitrogen flow rate was selected as the controlling variable. The MoNx specimens in the single-variable experiment showed prevailing (200) texture that could be attributed to the lowest surface energy associated with (200) plane and the base metal steering effect by Mo (110). The results of single-variable experiments indicated that the retained Mo metal phase plays an important role in hardness, electrical resistivity, and residual stress. Nanotwinned structure was found in Mo sample (SR), where the twinning mechanism was mainly due to the quench effect by sputtering deposition and the incorporation of interstitial nitrogen that provided sufficient stress to initiate the deformation twin.
摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Design of experiment 3
2.2 Deposition process 9
2.2.1 Reactive Sputtering 10
2.2.2 Film formation and structure of zone model 11
2.3 Characteristics of Mo-N system 13
Chapter 3 Experimental Details 19
3.1 Specimen Preparation and Deposition Process 19
3.2 Characterization of Compositions and Structure 24
3.2.1 X-ray diffraction (XRD) 24
3.2.2 Field-Emission Gun Scanning Electron Microscopy (FEG-SEM) 25
3.2.3 Chemical compositions 26
3.2.4 Surface Roughness and morphology 27
3.3 Characterization of Film Properties 27
3.3.1 Residual stress 28
3.3.2 Hardness and Young’s Modulus 29
3.3.3 Electrical Resistivity 29
Chapter 4 Results 32
4.1 Part I: Optimization of the deposition process of MoNx thin films 32
4.2 Part II: Effect of N2 flow rate on the structure and properties of MoNx thin films 45
4.2.1 Chemical Composition 48
4.2.2 Crystal structure and texture 49
4.2.3 Topography and cross-sectional morphology 51
4.2.4 The surface morphology and roughness 54
4.2.5 Electrical resistivity 55
4.2.6 Residual stress 56
4.2.7 Hardness 57
Chapter 5 Discussion 58
5.1 The process optimization of the MoNx thin film deposition 58
5.2 Effect of N2 flow rate on structure and properties of the MoNx thin films 62
5.2.1 Crystal structure and texture 62
5.2.2 Composition 63
5.2.3 Nanocomposites 67
5.2.3.1 Hardness 67
5.2.3.2 Electrical resistivity and residual stress 69
5.3 Characterization of Mo metal thin films 71
5.3.1 Mechanism of nanotwinned structure in Mo metal thin films 71
5.3.2 Hardness improvement 74
Chapter 6 Conclusions 81
Chapter 7 References 82
Appendix 88
[1] G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, Magnéli phase formation of PVD Mo–N and W–N coatings, Surf Coat Technol.
201 (2006) 3335-3341.
[2] M.S. Phadke, Quality engineering using robust design, Prentice Hall PTR, New Jersey, 1995.
[3] W.-J. Chou, C.-H. Sun, G.-P. Yu, J.-H. Huang, Optimization of the deposition process of ZrN and TiN thin films on Si (1 0 0) using design of experiment method, Mater. Chem. Phys., 82 (2003) 228-236.
[4] C.-K. Wu, J.-H. Huang, G.-P. Yu, Optimization of deposition processing of VN thin films using design of experiment and single-variable (nitrogen flow rate) methods, Mater. Chem. Phys., 224 (2019) 246-256.
[5] Y.-C. Chang, Using Design of Experiment to Optimize Deposition Processing of YSZ Thin Films by High Power Impulse Magnetron Sputtering, Master Thesis, National Tsing Hua University, Taiwan, R.O.C, (2018).
[6] R. Mientus, K. Ellmer, Reactive DC magnetron sputtering of elemental targets in Ar/N2 mixtures: relation between the discharge characteristics and the heat of formation of the corresponding nitrides, Surf. Coat. Technol., 116 (1999) 1093-1101.
[7] I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, Surf. Coat. Technol., 127 (2000) 203-218.
[8] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol., 191 (2005) 17-24.
[9] I. Petrov, P.B. Barna, L. Hultman, J. E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol., A, 21 (2003) S117-S128.
[10] B.A. Movachan, A.V. Demchishin, Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Dioxide Fiz, Met. Metall, 28 (1969) 83-90.
[11] J.A. Thornton, High rate thick film growth, Annu. Rev. Mater. Sci., 7 (1977) 239-260.
[12] R. Messier, A.P. Giri, R.A. Roy, Revised structure zone model for thin film physical structure, J. Vac. Sci. Technol., A, 2 (1984) 500-503.
[13] A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, 518 (2010) 4087-4090.
[14] P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Microstructural design of hard coatings, Prog. Mater. Sci., 51 (2006) 1032-1114.
[15] L. Hultman, Thermal stability of nitride thin films, Vacuum, 57 (2000) 1-30.
[16] H.O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications, William Andrew, New Jersey, USA, 1996.
[17] I. Jauberteau, A. Bessaudou, R. Mayet, J. Cornette, J. Jauberteau, P. Carles, T. Merle-Méjean, Molybdenum nitride films: crystal structures, synthesis, mechanical, electrical and some other properties, Coatings, 5 (2015) 656-687.
[18] W.E. Pickett, B.M. Klein, D.A. Papaconstantopoulos, Theoretical prediction of MoN as a high Tc superconductor, Physica B+C, 107 (1981) 667-668.
[19] S. Wang, D. Antonio, X. Yu, J. Zhang, A.L. Cornelius, D. He, Y. Zhao, The hardest superconducting metal nitride, Sci. Rep., 5 (2015) 13733.
[20] L. Volpe, M. Boudart, Compounds of molybdenum and tungsten with high specific surface area: I. Nitrides, J. Solid State Chem., 59 (1985) 332-347.
[21] R. Kojima, K.-i. Aika, Molybdenum nitride and carbide catalysts for ammonia synthesis, Appl. Catal., A, 219 (2001) 141-147.
[22] J.-G. Choi, J.R. Brenner, C.W. Colling, B.G. Demczyk, J.L. Dunning, L.T. Thompson, Synthesis and characterization of molybdenum nitride hydrodenitrogenation catalysts, Catal. Today, 15 (1992) 201-222.
[23] L. Ma, L.R.L. Ting, V. Molinari, C. Giordano, B.S. Yeo, Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route, J. Mater. Chem. A, 3 (2015) 8361-8368.
[24] M. Ürgen, O.L. Eryilmaz, A.F. Cakir, E.S. Kayali, B. Nilüfer, Y. Işik, Characterization of molybdenum nitride coatings produced by arc-PVD technique, Surf. Coat. Technol., 94 (1997) 501-506.
[25] P.J. Rudnik, M.E. Graham, W.D. Sproul, High rate reactive sputtering of MoNx coatings, Surf. Coat. Technol., 49 (1991) 293-297.
[26] F.F. Klimashin, N. Koutná, H. Euchner, D. Holec, P.H. Mayrhofer, The impact of nitrogen content and vacancies on structure and mechanical properties of Mo–N thin films, J. Appl. Phys., 120 (2016) 185301.
[27] X. Zhu, D. Yue, C. Shang, M. Fan, B. Hou, Phase composition and tribological performance of molybdenum nitride coatings synthesized by IBAD, Surf. Coat. Technol., 228 (2013) S184-S189.
[28] L. Toth, Transition metal carbides and nitrides, Elsevier, New York, 2014.
[29] D.L. Perry, Handbook of inorganic compounds, CRC press, Boca Raton, 2016.
[30] H. Jehn, P. Ettmayer, The molybdenum-nitrogen phase diagram, J. Less-Common Met., 58 (1978) 85-98.
[31] A.J. Perry, A.W. Baouchi, J.H. Petersen, S.D. Pozder, Crystal structure of molybdenum nitride films made by reactive cathodic arc evaporation, Surf. Coat. Technol., 54 (1992) 261-265.
[32] K. Balasubramanian, L. Huang, D. Gall, Phase stability and mechanical properties of Mo1-x Nx with 0≤ x≤ 1, J. Appl. Phys., 122 (2017) 195101.
[33] A.I.H. Committee, Properties and selection: nonferrous alloys and special-purpose materials, ASM Intl, Ohio, 1990.
[34] JCPDS, File No. 42-1120.
[35] JCPDS, File No. 25-1366.
[36] M.K. Kazmanli, M. Ürgen, A.F. Cakir, Effect of nitrogen pressure, bias voltage and substrate temperature on the phase structure of Mo–N coatings produced by cathodic arc PVD, Surf. Coat. Technol., 167 (2003) 77-82.
[37] V.P. Anitha, S. Major, D. Chandrashekharam, M. Bhatnagar, Deposition of molybdenum nitride thin films by rf reactive magnetron sputtering, Surf. Coat. Technol., 79 (1996) 50-54.
[38] JCPDS, File No. 75-1150.
[39] W.D. Sproul, M.E. Graham, M.-S. Wong, P.J. Rudnik, Reactive unbalanced magnetron sputtering of the nitrides of Ti, Zr, Hf, Cr, Mo, Ti-Al, Ti-Zr and Ti-Al-V, Surf. Coat. Technol., 61 (1993) 139-143.
[40] H. Jehn, W. Kurtz, D. Schneider, U. Trobisch, J. Wagner, Mo Molybdenum, Springer Science & Business Media, NY, 2013.
[41] H. Kattelus, J. Koskenala, A. Nurmela, A. Niskanen, Stress control of sputter-deposited Mo–N films for micromechanical applications, Microelectron. Eng., 60 (2002) 97-105.
[42] L. Stöber, J. P. Konrath, S. Krivec, F. Patocka, S. Schwarz, A. Bittner, M. Schneider, U. Schmid, Impact of sputter deposition parameters on molybdenum nitride thin film properties, J. Micromech. Microeng., 25 (2015) 074001.
[43] Y. Wang, R.Y. Lin, Amorphous molybdenum nitride thin films prepared by reactive sputter deposition, Mater. Sci. Eng., B, 112 (2004) 42-49.
[44] N. Savvides, High Tc superconducting B1 phase MoN films prepared by low‐energy ion‐assisted deposition, J. Appl. Phys., 62 (1987) 600-610.
[45] S.T. Oyama, Introduction to the chemistry of transition metal carbides and nitrides, in: The chemistry of transition metal carbides and nitrides, Springer, Glasgow, 1996, pp. 1-27.
[46] B.D. Ozsdolay, X. Shen, K. Balasubramanian, G. Scannell, L. Huang, M. Yamaguchi, D. Gall, Elastic constants of epitaxial cubic MoNx (001) layers, Surf. Coat. Technol., 325 (2017) 572-578.
[47] T. Wang, G. Zhang, S. Ren, B. Jiang, Effect of nitrogen flow rate on structure and properties of MoNx coatings deposited by facing target sputtering, J. Alloys Compd., 701 (2017) 1-8.
[48] P. Hones, N. Martin, M. Regula, F. Lévy, Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films, J. Phys. D: Appl. Phys., 36 (2003) 1023-1029.
[49] P. Scherrer, Bestimmung der Grösse und der inner Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr, 2 (1918) 98-100.
[50] L.V. Azaroff, M.J. Buerger, The Powder Method in X-Ray Crystallography, McGraw-Hill, New York,1958.
[51] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B, 5 (1972) 4709.
[52] G.T. Kim, T.K. Park, H. Chung, Growth and characterization of chloronitroaniline crystals for optical parametric oscillators: I. XPS study of Mo-based compounds, Appl. Surf. Sci., 152 (1999) 35-43.
[53] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. R. Soc. London, Ser. A, 82 (1909) 172-175.
[54] W.D. Nix, Mechanical properties of thin films, Metallurgical transactions A, 20 (1989) 2217.
[55] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
[56] O. Kubaschewski, A.L. Evans, C.B. Alcock, Metallurgical thermochemistry, Pergamon Press, New York, (1967).
[57] L. Stöber, J.P. Konrath, V. Haberl, F. Patocka, M. Schneider, U. Schmid, Nitrogen incorporation in sputter deposited molybdenum nitride thin films, J. Vac. Sci. Technol., A, 34 (2016) 021513.
[58] M. Ohring, Materials science of thin films Second Edition, Elsevier, San Diego, 2001.
[59] L. Hultman, J.E. Sundgren, J.E. Greene, Formation of polyhedral N2 bubbles during reactive sputter deposition of epitaxial TiN (100) films, J. Appl. Phys., 66 (1989) 536-544.
[60] D.A. Baldwin, N. Shamir, J.W. Rabalais, Molybdenum nitride film growth by reaction with N2+ and N+ beams: Energy and dose dependence, Appl. Surf. Sci., 11 (1982) 229-234.
[61] P. M. Martin, Handbook of deposition technologies for films and coatings: science, applications and technology, William Andrew, 2009.
[62] C.-H. Ma, J.-H. Huang, H. Chen, Nanohardness of nanocrystalline TiN thin films, Surf. Coat. Technol., 200 (2006) 3868-3875.
[63] G.E. Dieter, D.J. Bacon, Mechanical metallurgy, McGraw-hill New York, 1986.
[64] S. Ogata, J. Li, S. Yip, Twinning pathway in BCC molybdenum, Europhys. Lett., 68 (2004) 405.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *