|
[1] G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, Magnéli phase formation of PVD Mo–N and W–N coatings, Surf Coat Technol. 201 (2006) 3335-3341. [2] M.S. Phadke, Quality engineering using robust design, Prentice Hall PTR, New Jersey, 1995. [3] W.-J. Chou, C.-H. Sun, G.-P. Yu, J.-H. Huang, Optimization of the deposition process of ZrN and TiN thin films on Si (1 0 0) using design of experiment method, Mater. Chem. Phys., 82 (2003) 228-236. [4] C.-K. Wu, J.-H. Huang, G.-P. Yu, Optimization of deposition processing of VN thin films using design of experiment and single-variable (nitrogen flow rate) methods, Mater. Chem. Phys., 224 (2019) 246-256. [5] Y.-C. Chang, Using Design of Experiment to Optimize Deposition Processing of YSZ Thin Films by High Power Impulse Magnetron Sputtering, Master Thesis, National Tsing Hua University, Taiwan, R.O.C, (2018). [6] R. Mientus, K. Ellmer, Reactive DC magnetron sputtering of elemental targets in Ar/N2 mixtures: relation between the discharge characteristics and the heat of formation of the corresponding nitrides, Surf. Coat. Technol., 116 (1999) 1093-1101. [7] I. Safi, Recent aspects concerning DC reactive magnetron sputtering of thin films: a review, Surf. Coat. Technol., 127 (2000) 203-218. [8] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol., 191 (2005) 17-24. [9] I. Petrov, P.B. Barna, L. Hultman, J. E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol., A, 21 (2003) S117-S128. [10] B.A. Movachan, A.V. Demchishin, Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Dioxide Fiz, Met. Metall, 28 (1969) 83-90. [11] J.A. Thornton, High rate thick film growth, Annu. Rev. Mater. Sci., 7 (1977) 239-260. [12] R. Messier, A.P. Giri, R.A. Roy, Revised structure zone model for thin film physical structure, J. Vac. Sci. Technol., A, 2 (1984) 500-503. [13] A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, 518 (2010) 4087-4090. [14] P.H. Mayrhofer, C. Mitterer, L. Hultman, H. Clemens, Microstructural design of hard coatings, Prog. Mater. Sci., 51 (2006) 1032-1114. [15] L. Hultman, Thermal stability of nitride thin films, Vacuum, 57 (2000) 1-30. [16] H.O. Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications, William Andrew, New Jersey, USA, 1996. [17] I. Jauberteau, A. Bessaudou, R. Mayet, J. Cornette, J. Jauberteau, P. Carles, T. Merle-Méjean, Molybdenum nitride films: crystal structures, synthesis, mechanical, electrical and some other properties, Coatings, 5 (2015) 656-687. [18] W.E. Pickett, B.M. Klein, D.A. Papaconstantopoulos, Theoretical prediction of MoN as a high Tc superconductor, Physica B+C, 107 (1981) 667-668. [19] S. Wang, D. Antonio, X. Yu, J. Zhang, A.L. Cornelius, D. He, Y. Zhao, The hardest superconducting metal nitride, Sci. Rep., 5 (2015) 13733. [20] L. Volpe, M. Boudart, Compounds of molybdenum and tungsten with high specific surface area: I. Nitrides, J. Solid State Chem., 59 (1985) 332-347. [21] R. Kojima, K.-i. Aika, Molybdenum nitride and carbide catalysts for ammonia synthesis, Appl. Catal., A, 219 (2001) 141-147. [22] J.-G. Choi, J.R. Brenner, C.W. Colling, B.G. Demczyk, J.L. Dunning, L.T. Thompson, Synthesis and characterization of molybdenum nitride hydrodenitrogenation catalysts, Catal. Today, 15 (1992) 201-222. [23] L. Ma, L.R.L. Ting, V. Molinari, C. Giordano, B.S. Yeo, Efficient hydrogen evolution reaction catalyzed by molybdenum carbide and molybdenum nitride nanocatalysts synthesized via the urea glass route, J. Mater. Chem. A, 3 (2015) 8361-8368. [24] M. Ürgen, O.L. Eryilmaz, A.F. Cakir, E.S. Kayali, B. Nilüfer, Y. Işik, Characterization of molybdenum nitride coatings produced by arc-PVD technique, Surf. Coat. Technol., 94 (1997) 501-506. [25] P.J. Rudnik, M.E. Graham, W.D. Sproul, High rate reactive sputtering of MoNx coatings, Surf. Coat. Technol., 49 (1991) 293-297. [26] F.F. Klimashin, N. Koutná, H. Euchner, D. Holec, P.H. Mayrhofer, The impact of nitrogen content and vacancies on structure and mechanical properties of Mo–N thin films, J. Appl. Phys., 120 (2016) 185301. [27] X. Zhu, D. Yue, C. Shang, M. Fan, B. Hou, Phase composition and tribological performance of molybdenum nitride coatings synthesized by IBAD, Surf. Coat. Technol., 228 (2013) S184-S189. [28] L. Toth, Transition metal carbides and nitrides, Elsevier, New York, 2014. [29] D.L. Perry, Handbook of inorganic compounds, CRC press, Boca Raton, 2016. [30] H. Jehn, P. Ettmayer, The molybdenum-nitrogen phase diagram, J. Less-Common Met., 58 (1978) 85-98. [31] A.J. Perry, A.W. Baouchi, J.H. Petersen, S.D. Pozder, Crystal structure of molybdenum nitride films made by reactive cathodic arc evaporation, Surf. Coat. Technol., 54 (1992) 261-265. [32] K. Balasubramanian, L. Huang, D. Gall, Phase stability and mechanical properties of Mo1-x Nx with 0≤ x≤ 1, J. Appl. Phys., 122 (2017) 195101. [33] A.I.H. Committee, Properties and selection: nonferrous alloys and special-purpose materials, ASM Intl, Ohio, 1990. [34] JCPDS, File No. 42-1120. [35] JCPDS, File No. 25-1366. [36] M.K. Kazmanli, M. Ürgen, A.F. Cakir, Effect of nitrogen pressure, bias voltage and substrate temperature on the phase structure of Mo–N coatings produced by cathodic arc PVD, Surf. Coat. Technol., 167 (2003) 77-82. [37] V.P. Anitha, S. Major, D. Chandrashekharam, M. Bhatnagar, Deposition of molybdenum nitride thin films by rf reactive magnetron sputtering, Surf. Coat. Technol., 79 (1996) 50-54. [38] JCPDS, File No. 75-1150. [39] W.D. Sproul, M.E. Graham, M.-S. Wong, P.J. Rudnik, Reactive unbalanced magnetron sputtering of the nitrides of Ti, Zr, Hf, Cr, Mo, Ti-Al, Ti-Zr and Ti-Al-V, Surf. Coat. Technol., 61 (1993) 139-143. [40] H. Jehn, W. Kurtz, D. Schneider, U. Trobisch, J. Wagner, Mo Molybdenum, Springer Science & Business Media, NY, 2013. [41] H. Kattelus, J. Koskenala, A. Nurmela, A. Niskanen, Stress control of sputter-deposited Mo–N films for micromechanical applications, Microelectron. Eng., 60 (2002) 97-105. [42] L. Stöber, J. P. Konrath, S. Krivec, F. Patocka, S. Schwarz, A. Bittner, M. Schneider, U. Schmid, Impact of sputter deposition parameters on molybdenum nitride thin film properties, J. Micromech. Microeng., 25 (2015) 074001. [43] Y. Wang, R.Y. Lin, Amorphous molybdenum nitride thin films prepared by reactive sputter deposition, Mater. Sci. Eng., B, 112 (2004) 42-49. [44] N. Savvides, High Tc superconducting B1 phase MoN films prepared by low‐energy ion‐assisted deposition, J. Appl. Phys., 62 (1987) 600-610. [45] S.T. Oyama, Introduction to the chemistry of transition metal carbides and nitrides, in: The chemistry of transition metal carbides and nitrides, Springer, Glasgow, 1996, pp. 1-27. [46] B.D. Ozsdolay, X. Shen, K. Balasubramanian, G. Scannell, L. Huang, M. Yamaguchi, D. Gall, Elastic constants of epitaxial cubic MoNx (001) layers, Surf. Coat. Technol., 325 (2017) 572-578. [47] T. Wang, G. Zhang, S. Ren, B. Jiang, Effect of nitrogen flow rate on structure and properties of MoNx coatings deposited by facing target sputtering, J. Alloys Compd., 701 (2017) 1-8. [48] P. Hones, N. Martin, M. Regula, F. Lévy, Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films, J. Phys. D: Appl. Phys., 36 (2003) 1023-1029. [49] P. Scherrer, Bestimmung der Grösse und der inner Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr, 2 (1918) 98-100. [50] L.V. Azaroff, M.J. Buerger, The Powder Method in X-Ray Crystallography, McGraw-Hill, New York,1958. [51] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B, 5 (1972) 4709. [52] G.T. Kim, T.K. Park, H. Chung, Growth and characterization of chloronitroaniline crystals for optical parametric oscillators: I. XPS study of Mo-based compounds, Appl. Surf. Sci., 152 (1999) 35-43. [53] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. R. Soc. London, Ser. A, 82 (1909) 172-175. [54] W.D. Nix, Mechanical properties of thin films, Metallurgical transactions A, 20 (1989) 2217. [55] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583. [56] O. Kubaschewski, A.L. Evans, C.B. Alcock, Metallurgical thermochemistry, Pergamon Press, New York, (1967). [57] L. Stöber, J.P. Konrath, V. Haberl, F. Patocka, M. Schneider, U. Schmid, Nitrogen incorporation in sputter deposited molybdenum nitride thin films, J. Vac. Sci. Technol., A, 34 (2016) 021513. [58] M. Ohring, Materials science of thin films Second Edition, Elsevier, San Diego, 2001. [59] L. Hultman, J.E. Sundgren, J.E. Greene, Formation of polyhedral N2 bubbles during reactive sputter deposition of epitaxial TiN (100) films, J. Appl. Phys., 66 (1989) 536-544. [60] D.A. Baldwin, N. Shamir, J.W. Rabalais, Molybdenum nitride film growth by reaction with N2+ and N+ beams: Energy and dose dependence, Appl. Surf. Sci., 11 (1982) 229-234. [61] P. M. Martin, Handbook of deposition technologies for films and coatings: science, applications and technology, William Andrew, 2009. [62] C.-H. Ma, J.-H. Huang, H. Chen, Nanohardness of nanocrystalline TiN thin films, Surf. Coat. Technol., 200 (2006) 3868-3875. [63] G.E. Dieter, D.J. Bacon, Mechanical metallurgy, McGraw-hill New York, 1986. [64] S. Ogata, J. Li, S. Yip, Twinning pathway in BCC molybdenum, Europhys. Lett., 68 (2004) 405.
|