帳號:guest(3.149.238.79)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪禹成
作者(外文):Hung, Yu-Cheng
論文名稱(中文):金屬梯度層對鍍覆於AISI D2鋼之氮化鈦鋯鍍層磨潤性之影響
論文名稱(外文):Effect of Metallic Graded Layers on Tribological Behavior of TiZrN Coatings on AISI D2 steel
指導教授(中文):黃嘉宏
指導教授(外文):Huang, Jia-Hong
口試委員(中文):李志偉
張銀祐
口試委員(外文):Lee, Jyh-Wei
Chang, Yin-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:106011501
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:56
中文關鍵詞:金屬梯度層氮化鈦鋯附著性抗磨耗性殘留應力
外文關鍵詞:Metallic graded layerTiZrNAdhesion strengthWear resistanceResidual stress
相關次數:
  • 推薦推薦:0
  • 點閱點閱:181
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目的為延伸金屬介層塑性變形導致陶瓷鍍層應力釋放之物理模型於鈦/鈦鋯/氮化鈦鋯三層鍍膜系統,以及探討鈦鋯過渡層與鈦介層對於氮化鈦鋯鍍層抗磨耗性之影響。本研究使用非平衡磁控濺鍍法在AISI D2鋼基材上鍍製單層、雙層、以及三層之氮化鈦鋯鍍層。並以平均X光應變結合奈米壓痕法量測氮化鈦鋯層之殘留應力。實驗結果顯示鈦鋯過渡層及鈦介層可藉由共同塑性變形釋放氮化鈦鋯之殘留應力。而以含鈦鋯過渡層與鈦介層各200 nm的T1試片最能有效釋放上層氮化鈦鋯之應力。隨著鈦鋯過渡層厚度增加,由金屬梯度層所組合的有效強度係數變大,使得鈦與鈦鋯層所做的塑變功減少導致應力釋放能力下降。由於T1試片有最低的彈性儲存能以及良好的附著性,而擁有最好的抗磨耗性。因此鍍製適當的鈦鋯過渡層/鈦介層組合能有效的增強氮化鈦鋯之抗磨耗性。隨著加入200 nm鈦介層以及200 nm鈦鋯過渡層,由於氮化鈦鋯的彈性儲存能下降,使其磨耗率下降;而隨著鈦鋯過渡層的厚度增加,氮化鈦鋯厚度減少,使其磨耗速率上升。T3試片(含400 nm鈦鋯過渡層)因附著性差而導致其磨耗率最高。
The objectives of this study were to extend the physical model on the stress relief derived from ZrN/Ti bilayer system to the trilayer TiZrN/TiZr/Ti system in which the stress in TiZrN layer was relieved by the plastic deformation of TiZr transition layer and Ti interlayer, and further investigate the effect of TiZr transition layer and Ti interlayer on the wear resistance of graded TiZrN/TiZr/Ti coatings. The single-layer TiZrN coatings, bi-layer TiZrN/Ti coatings and graded TiZrN/TiZr/Ti coatings with different thickness of TiZr transition layers were deposited on AISI D2 steel using unbalanced magnetron sputtering. The residual stress of the TiZrN layer was measured by average X-ray strain combined with nanoindentation methods. The stress relief of the TiZrN layer by the plastic deformation of TiZr and Ti layers was estimated by the previously proposed physical model. The results showed that both Ti and TiZr layers worked in parallel to relieve stress in the TiZrN layer by plastic deformation. The most effective combination of Ti and TiZr layer thickness for the stress relief was found to be both layer with similar thickness of 200 nm (specimen T1). Moreover, the extent of stress relief by plastic work of Ti and TiZr layers decreased with increasing thickness of TiZr layer due to the increase of the effective strength coefficient. Specimen T1 possessed the lowest elastic stored energy and great adhesion strength, and thus having the highest wear resistance compared to other specimens. Therefore, the TiZrN coatings with appropriate combination of graded TiZr/Ti layers may significantly enhance the tribological behavior. The wear rate of coatings decreased by introducing Ti interlayer and additional 200 nm TiZr transition layer (specimen T1), mostly due to the decrease of stored energy of TiZrN layer. However, the wear rate of the coatings increased when the TiZr layer further increased due to decreasing in TiZrN thickness. Specimen T3 (with 400 nm TiZr) showed the highest wear rate because of adhesion failure.
致謝 i
摘要 iii
Abstract iv
Content v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Characteristics of Transition Metal Nitride 3
2.2 Characteristics of TiZrN coatings 4
2.2.1 Microstructure of TiZrN coatings 5
2.2.2 Mechanical properties of TiZrN coatings 5
2.3 Effect of metallic interlayer 6
2.4 Characteristics of functionally graded coatings 8
2.5 Tribological Behavior 9
2.5.1 Adhesion strength 9
2.5.2 Wear resistance 11
Chapter 3 Experimental Details 14
3.1 Substrate Preparation 14
3.2 Deposition Procedures 14
3.3 Characterization Methods for Compositions and Structure 17
3.3.1 Composition 17
3.3.2 Crystal Structure 17
3.3.3 Cross-sectional Morphology and Topography 18
3.3.4 Surface Roughness 18
3.4 Measurement methods for properties 18
3.4.1 Hardness and Young’s Modulus 18
3.4.2 Residual stress 19
3.4.3 Adhesion 20
3.4.4 Wear Resistance 21
Chapter 4 Results 23
4.1 Structure 25
4.1.1 Chemical compositions 25
4.1.2 Crystal structure 25
4.1.3 Microstructure 27
4.1.4 Surface roughness 29
4.2 Properties 29
4.2.1 Hardness and Young’s modulus 29
4.2.2 Residual stress 31
4.2.3 Adhesion 33
4.2.4 Wear resistance 37
Chapter 5 Discussion 42
5.1 Residual stress 42
5.1.1 Effect of plastic deformation of TiZr and Ti layers on the stress relief 42
5.1.2 The flow stress of TiZr and Ti layers 43
5.2 Wear resistance 46
5.2.1 Effect of stored energy and TiZrN thickness on wear resistance 47
5.2.2 The role of TiZr transition layer and Ti interlayer on wear resistance 48
Chapter 6 Conclusions 50
References 51
Appendix A 54
Appendix B 55
[1] A. Glaser, S. Surnev, F. Netzer, N. Fateh, G. Fontalvo, C. Mitterer, Oxidation of vanadium nitride and titanium nitride coatings, Surf. Sci., 601 (2007) 1153-1159.
[2] P. Kelly, T. Vom Braucke, Z. Liu, R. Arnell, E. Doyle, Pulsed DC titanium nitride coatings for improved tribological performance and tool life, Surf. Coat. Technol., 202 (2007) 774-780.
[3] S. Bull, P. Chalker, C. Ayres, D. Rickerby, The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapour deposition, Mater. Sci. Eng., A, 139 (1991) 71-78.
[4] Y.-W. Lin, J.-H. Huang, W.-J. Cheng, G.-P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol., 350 (2018) 745-754.
[5] P.-C. Chih, Effect of Ti interlayer thickness on mechanical properties and wear resistance of TiZrN coatings on AISI D2 steel, National Tsing Hua university, Master thesis, 2017.
[6] T.-W. Zheng, Effect of Ti interlayer on stress relief of ZrN/Ti bilayer thin films on silicon substrate, National Tsing Hua university, Master thesis, 2018.
[7] E. Damerchi, A. Abdollah-zadeh, R. Poursalehi, M. Mehr, Effects of functionally graded TiN layer and deposition temperature on the structure and surface properties of TiCN coating deposited on plasma nitrided H13 steel by PACVD method, J. Alloys Compd., 772 (2019) 612-624.
[8] Y.-Y. Chang, S.-Y. Weng, C.-H. Chen, F.-X. Fu, High temperature oxidation and cutting performance of AlCrN, TiVN and multilayered AlCrN/TiVN hard coatings, Surf. Coat. Technol., 332 (2017) 494-503.
[9] H. Wriedt, J. Murray, The N-Ti (nitrogen-titanium) system, Bull. Alloy Phase Diagrams, 8 (1987) 378-388.
[10] H. Okamoto, J. Phase Equilib. Diffus., N-Zr (Nitrogen-Zirconium), 27 (2006) 551-551.
[11] N. Pessall, R. Gold, H. Johansen, A study of superconductivity in interstitial compounds, J. Phys. Chem. Solids, 29 (1968) 19-38.
[12] W.-J. Chou, G.-P. Yu, J.-H. Huang, Bias effect of ion-plated zirconium nitride film on Si (100), Thin Solid Films, 405 (2002) 162-169.
[13] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol., 191 (2005) 17-24.
[14] Z. Qi, P. Sun, F. Zhu, Z. Wang, D. Peng, C. Wu, The inverse Hall–Petch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol., 205 (2011) 3692-3697.
[15] J. Kim, J.D. Achenbach, P. Mirkarimi, M. Shinn, S.A. Barnett, Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy, J. Appl. Phys., 72 (1992) 1805-1811.
[16] E. Török, A.J. Perry, L. Chollet, W.D. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 153 (1987) 37.
[17] K. Chen, L. Zhao, J. Rodgers, S.T. John, Alloying effects on elastic properties of TiN-based nitrides, J. Phys. D: Appl. Phys. 36 (2003) 2725.
[18] A. Perry, A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films, 193 (1990) 463-471.
[19] J.-H. Huang, Y.-F. Chen, G.-P. Yu, Evaluation of the fracture toughness of Ti1-xZrxN hard coatings: Effect of compositions, Surf. Coat. Technol., 358 (2019) 487-496.
[20] G. Abadias, V. Ivashchenko, L. Belliard, P. Djemia, Structure, phase stability and elastic properties in the Ti1–xZrxN thin-film system: Experimental and computational studies, Acta Mater., 60 (2012) 5601-5614.
[21] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films, 518 (2010) 7308-7311.
[22] D. Gall, S. Kodambaka, M. Wall, I. Petrov, J. Greene, Pathways of atomistic processes on TiN (001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys., 93 (2003) 9086-9094.
[23] Y.-W. Lin, J.-H. Huang, G.-P. Yu, C.-N. Hsiao, F.-Z. Chen, Influence of ion bombardment on structure and properties of TiZrN thin film, Appl. Surf. Sci., 354 (2015) 155-160.
[24] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol., 239 (2014) 20-27.
[25] R.M.C. William, F. Hosford, Metal forming mechanics and Metallurgy, Third edition, Cambridge, New York, 2007.
[26] N. Schalk, M. Tkadletz, V.L. Terziyska, M. Deluca, I. Letofsky-Papst, J. Keckes, C. Mitterer, Evolution of microstructure and mechanical properties of a graded TiAlON thin film investigated by cross-sectional characterization techniques, Surf. Coat. Technol., 359 (2019) 155-161.
[27] V. Teles, J. de Mello, W. da Silva Jr, Abrasive wear of multilayered/gradient CrAlSiN PVD coatings: Effect of interface roughness and of superficial flaws, Wear, 376 (2017) 1691-1701.
[28] M.S. Kabir, P. Munroe, Z. Zhou, Z.J. Xie, Wear behavior of graded Cr-CrN-Cr (1− x) Al (x) N coatings synthesized by closed-field unbalanced magnetron sputtering for advanced machining operations, Ceram. Int., 44 (2018) 7723-7733.
[29] M.T. Laugier, An energy approach to the adhesion of coatings using the scratch test, Thin Solid Films, 117 (1984) 243-249.
[30] J. Richter, Application of Vickers indentation for assessment of PVD TiN coated new nonledeburitic high-speed steels, Surf. Coat. Technol., 162 (2003) 119-130.
[31] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit, Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests, Thin Solid Films, 270 (1995) 431-438.
[32] J. Takadoum, H.H. Bennani, Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films, Surf. Coat. Technol., 96 (1997) 272-282.
[33] G. Skordaris, K. Bouzakis, T. Kotsanis, P. Charalampous, E. Bouzakis, B. Breidenstein, B. Bergmann, B. Denkena, Effect of PVD film's residual stresses on their mechanical properties, brittleness, adhesion and cutting performance of coated tools, CIRP J. Manuf. Sci. Technol., 18 (2017) 145-151.
[34] R. Ali, M. Sebastiani, E. Bemporad, Influence of Ti–TiN multilayer PVD-coatings design on residual stresses and adhesion, Mater. Des. 75 (2015) 47-56.
[35] E. Harry, A. Rouzaud, P. Juliet, Y. Pauleau, Adhesion and failure mechanisms of tungsten–carbon containing multilayered and graded coatings subjected to scratch tests, Thin Solid Films, 342 (1999) 207-213.
[36] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour, Wear, 246 (2000) 1-11.
[37] K. Khlifi, A.B.C. Larbi, Technology, Mechanical properties and adhesion of TiN monolayer and TiN/TiAlN nanolayer coatings, J. Adhes. Sci. Technol., 28 (2014) 85-96.
[38] P. Scherrer, Bestimmung der Grösse und der inner Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2 (1918) 98-100.
[39] JCPDF pdf #89-5009.
[40] JCPDF pdf #65-0970.
[41] JCPDF pdf #89-4902.
[42] JCPDF pdf #65-0972.
[43] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
[44] C.-H. Ma, J.-H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78.
[45] B.B. He, Two-dimensional X-ray diffraction, Wiley, New York, 2009.
[46] S. Ma, J. Prochazka, P. Karvankova, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Vepřek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN, Surf. Coat. Technol., 194 (2005) 143-148.
[47] S. Monteiro, R. Reed-Hill, An empirical analysis of titanium stress-strain curves, Metall. Trans. 4 (1973) 1011-1015.
[48] A. Garde, E. Aigeltinger, R. Reed-Hill, Relationship between deformation twinning and the stress-strain behavior of polycrystalline titanium and zirconium at 77 K, Metall. Trans., 4 (1973) 2461-2468.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *