帳號:guest(18.118.37.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):范振琳
作者(外文):Fan, Chen-Lin
論文名稱(中文):溫度對Co50Fe50與(Co50Fe50)80B20薄膜磁特性與粗糙度之影響
論文名稱(外文):Temperature effect on the magnetic properties and roughness of Co50Fe50 and (Co50Fe50)80B20 thin films
指導教授(中文):李志浩
林宏基
指導教授(外文):Lee, Chih-Hao
Lin, Hong-Ji
口試委員(中文):林滄浪
朱鵬維
口試委員(外文):Lin, Tsang-Lang
Chu, Peng-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:先進光源科技學位學程
學號:106001503
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:117
中文關鍵詞:製備溫度退火溫度粗糙度X光反射磁性薄膜
外文關鍵詞:growth temperatureannealing temperatureroughnessX-ray reflectivitymagnetic thin film
相關次數:
  • 推薦推薦:0
  • 點閱點閱:146
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本實驗致力於研究不同退火溫度(室溫以及350 ℃)狀況下鈷鐵(比例為50:50)與鈷鐵硼(比例為40:40:20)結構以及磁特性之影響。我們利用高真空之磁控濺鍍法製備樣品,並於最上層覆蓋2 nm的碳薄膜。在結構上,我們利用X光繞射儀來觀察兩種薄膜的結晶狀況,並且使用X光反射檢測並比較其密度的差異、厚度以及粗糙度的變化量。我們觀察到在室溫下製備之樣品中,鈷鐵薄膜不論是否退火皆無法使其中的鈷鐵結晶化,但是鈷鐵硼薄膜則不同,在退火後的樣品中可以觀測到結晶的鈷鐵(002)的繞射峰,可能因為其中的硼存在於格隙之間以降低了結晶的能量。在粗糙度的部分,也可以明顯的由其斜率得知不論在室溫製備下的何種狀況,鈷鐵硼的粗糙度皆小於鈷鐵的薄膜。而在磁性方面,能夠觀察到鈷鐵薄膜的矯頑力會有大幅度的增加為原本的25倍左右,但是鈷鐵硼薄膜的矯頑力相較之下則是相對小幅的9倍而已。而350 ℃下製備則截然不同,鈷鐵薄膜不論是否退火皆展現出良好的鈷鐵(002)繞射峰,相比於室溫下製備,在製備過程中給予能量,能更有效的使薄膜結晶化,但鈷鐵硼薄膜則無法觀察到繞射峰,而在粗糙度的部分,會與室溫下製備完全相反,不論退火與否,鈷鐵的粗糙度明顯小於鈷鐵硼之薄膜。而在磁性方面,能夠觀察到鈷鐵薄膜的矯頑力經退火後雖有明顯的增加,但是退火後依舊展現出良好的方正性,與鈷鐵薄膜不同,鈷鐵硼薄膜雖然擁有較小的矯頑力,但退火後卻無法改善其方正性。
In this study, we focused to study the annealing temperature effects on the Co50Fe50 and (Co50Fe50)80B20 structures and magnetic properties under different annealing temperatures (room temperature and 350 ℃). We use high-vacuum magnetron sputtering to prepare samples, and cover the capping layer with a 2 nm C thin film. In the structural study, we use X-ray diffraction (XRD) to observe the crystallization of the thin films, and use X-ray reflection (XRR) to detect and compare the difference in density, thickness and roughness. We found that in the CoFe thin films, the CoFe thin films can’t be crystallized at whatever annealing or not, but the (Co50Fe50)80B20 thin films can observe the diffraction peak of the crystallized CoFe(002) after annealing. In the roughness measurement, it can also be clearly seen from its slope of XRR curve that the roughness of (Co50Fe50)80B20 thin films are less than the Co50Fe50 thin films under all the conditions in the experiment. In the magnetic properties, it can observe clearly that the coercivity of the Co50Fe50 thin films increase greatly 25 times after annealing, but the (Co50Fe50)80B20 thin films just increase 9 times. However, the Co50Fe50 thin films at the 350 ℃ during sputtering show a better diffraction peak of CoFe(002) regardless of whether it is prepared at room temperature. In XRD, the diffraction peak cannot be observed in the (Co50Fe50)80B20 thin films, and the roughness part is completely opposite to that prepared at room temperature. The roughness of the thin films are obviously smaller than that of the (Co50Fe50)80B20 film regardless of annealing. In MOKE, it can be observed that although the coercivity of the Co50Fe50 thin films increases significantly after annealing, it still shows good squareness after annealing. Unlike the Co50Fe50 thin films, the (Co50Fe50)80B20 thin films have a smaller coercivity, but its squareness cannot be improved after annealing.
摘要.......................i
Abstract...................ii
致謝.......................iii
目錄.......................iv
圖目錄.....................viii
表目錄.....................xii
第一章 緒論.................1
第二章 磁性概論..............2
2.1 磁性的來源..............2
2.2 磁性物質的分類...........3
2.2.1 Paramagnetism.....5
2.2.2 Ferromagnetism.....5
2.2.3 Antiferromagnetism.....6
2.3 磁區(Magnetic domain).....7
2.4 磁滯迴線(Hysteresis loop).....9
第三章 Co50Fe50與(Co50Fe50)80B20薄膜介紹.....11
3.1 Co50Fe50與(Co50Fe50)80B20之系統.....11
3.2 Co50Fe50與(Co50Fe50)80B20的應用.....12
3.2.1 MRAM.....12
3.3 CoFe與CoFeB之文獻回顧.....14
3.4 研究動機.....17
第四章 量測儀器原理與實驗方法.....18
4.1 物理氣相沉積法(Physical Vapor Deposition).....18
4.1.1直流濺鍍(Direct Current Sputtering).....19
4.1.2射頻濺鍍(Radio Frequency Sputtering).....19
4.2 薄膜成長理論.....20
4.3 同步輻射光源(Synchrotron Radiation Light Source).....22
4.4 XRD.....24
4.5 XRR.....24
4.5.1臨界角(Critical angle).....25
4.5.2薄膜厚度.....27
4.6 磁光科爾效應(Magneto-Optic Kerr Effect; MOKE).....28
4.7 實驗步驟.....29
4.7.1實驗流程.....29
4.7.2 實驗製備與參數.....30
4.7.3基板的清洗流程.....31
4.7.4 濺鍍流程.....31
第五章 結果與討論.....33
5.1 C覆蓋層對Co50Fe50之防氧化能力.....33
5.1.1 無C覆蓋Co50Fe50薄膜XRD與XRR之結構分析.....33
5.1.2 無C覆蓋之Co50Fe50薄膜之MOKE分析.....37
5.1.3 C(2 nm)/Co50Fe50薄膜XRD與XRR之結構分析.....38
5.1.4 C(2 nm)/Co50Fe50薄膜之MOKE分析.....41
5.1.5 C(15 nm)/Co50Fe50薄膜XRD與XRR之結構分析.....42
5.1.6 C(15 nm)/Co50Fe50薄膜之MOKE分析.....46
5.2 退火溫度對製備於室溫之Co50Fe50薄膜之影響.....47
5.2.1 Td=RT與Ta=RT之C(2 nm)/Co50Fe50薄膜XRD與XRR之結構分析.....47
5.2.2 Td=RT與Ta=RT之C(2 nm)/Co50Fe50薄膜之MOKE之磁特性分析.....49
5.2.3 Td=RT與Ta=350 ℃之C(2 nm)/Co50Fe50薄膜XRD與XRR之結構分析.....50
5.2.4 Td=RT與Ta=350 ℃之C(2 nm)/Co50Fe50薄膜之MOKE之磁特性分析.....53
5.3 退火溫度對製備於室溫之 (Co50Fe50)80B20薄膜之影響......53
5.3.1 Td=RT與Ta=RT之C(2 nm)/(Co50Fe50)80B20薄膜XRD與XRR之結構分析.....53
5.3.2 Td=RT與Ta=RT之C(2 nm)/(Co50Fe50)80B20薄膜MOKE之磁特性分析.....56
5.3.3 Td=RT與Ta=350 ℃之C(2 nm)/(Co50Fe50)80B20薄膜XRD與XRR之結構分析.....57
5.3.4 Td=RT與Ta=350 ℃之C(2 nm)/(Co50Fe50)80B20薄膜MOKE之磁特性分析.....59
5.4 Co50Fe50薄膜與(Co50Fe50)80B20薄膜於室溫下製備之差異.....60
5.4.1 XRR之比較.....60
5.4.2 MOKE之比較.....62
5.5 退火溫度對製備於350 ℃之Co50Fe50薄膜之影響.....62
5.5.1 Td=350 ℃與Ta=RT之C(2 nm)/Co50Fe50薄膜XRD與XRR之結構分析.....62
5.5.2 Td=350 ℃與Ta=RT之C(2 nm)/Co50Fe50薄膜之MOKE之磁特性分析.....66
5.5.3 Td=350 ℃與Ta=350 ℃之C(2 nm)/Co50Fe50薄膜XRD與XRR之結構分析.....66
5.5.4 Td=350 ℃與Ta=350 ℃之C(2 nm)/Co50Fe50薄膜之MOKE之磁特性分析.....70
5.6 退火溫度對製備於350 ℃之 (Co50Fe50)80B20薄膜之影響.....70
5.6.1 Td=350 ℃與Ta=RT之C(2 nm)/(Co50Fe50)80B20薄膜XRD與XRR之結構分析.....70
5.6.2 Td=350 ℃與Ta=RT之C(2 nm)/(Co50Fe50)80B20薄膜MOKE磁特性分析.....73
5.6.3 Td=350 ℃與Ta=350 ℃之C(2 nm)/(Co50Fe50)80B20薄膜XRD與XRR之結構分析.....74
5.6.4 Td=350 ℃與Ta=350 ℃之C(2 nm)/(Co50Fe50)80B20薄膜MOKE之磁特性分析.....77
5.7 Co50Fe50與(Co50Fe50)80B20薄膜於350 ℃下製備之差異.....78
5.7.1 XRR之比較.....78
5.7.2 MOKE之比較.....80
第六章 結論.....81
第七章 未來展望.....83
參考文獻.....84
附錄A Ta覆蓋層對FeRh薄膜之結構與磁特性之影響.....87
A.1 FeRh單層於不同退火溫度之分析......94
A.1.1 FeRh單層於不同退火溫度之製備參數.....94
A.1.2 XRD分析.....95
A.1.3 XRR分析.....99
A.1.4 磁性分析.....99
A.2不同厚度FeRh層加上Ta覆蓋層之影響.....101
A.2.1不同厚度FeRh層加上Ta覆蓋層之製備參數.....101
A.2.2 XRD分析.....102
A.2.3 磁性分析.....103
參考文獻.....106
附錄B The exchange bias effect on single layer of Fe-rich FeRh thin film.....107
附錄C Influence of gamma-ray irradiation and post-annealing studies on pentacene films: the anisotropic effects on structural and electronic properties.....110
1.Kittel, C. and P. McEuen, Introduction to solid state physics. Vol. 8. 1976: Wiley New York.
2.https://techomat.wordpress.com/2015/05/31/secret-of-magnetism/.
3.李景明、張慶瑞,磁性技術手冊─第二章,中華民國磁性技術協會(2002).
4.Robert C. OHandley, “Modern Magnetic Materials: Principles and Applications” Wiley inc. (1999).
5.Knight, Jones, & Field, "College Physics" (2007) p. 815.
6.Boyer, Timothy H. (1988). "The Force on a Magnetic Dipole". American Journal of Physics 56 (8): 688–692.
7.Hu, A.Y. and H.Y. Wang, The exchange interaction values of perovskite-type materials EuTiO3 and EuZrO3. Journal of Applied Physics, 2014. 116(19): p. 7.
8.Oogane, M., et al., Magnetic damping in ferromagnetic thin films. Japanese Journal of Applied Physics,2006 , Volume 45, Part 1, Number 5A
9.鍾睿騏, 摻雜銅於序化鐵銠薄膜對結構、磁性之影響,清華大學碩士論文(2020).
10.Bhatti, S., et al., Spintronics based random access memory: a review. Materials Today, 2017. 20(9): p. 530-548.
11.Djayaprawira, D.D., et al., 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions. Applied Physics Letters, 2005. 86(9): p. 3.
12.Negusse, E., et al., Magnetic characterization of CoFeB/MgO and CoFe/MgO interfaces. Applied Physics Letters, 2007. 90(9): p. 3.
13.陳建人, 真空技術與應用,國家實驗研究院儀器科技研究中心出版. 2008.
14.吳自勤、王兵、孫霞, 薄膜生長,191-190、213-214. 科學出版社, 2001.
15.原著 麻蒔立男、陳國榮等人譯, 薄膜製備技術基礎(原著第4版),化學工業出版社.2009.
16.Bendjerad, A., et al., Modeling of magnetic properties of iron thin films deposited by RF magnetron sputtering using Preisach model. 2016. 13(2): p. 229-238.
17.http://mems.mt.ntnu.edu.tw/document/class/97%E4%B8%8A%E5%AD%B8%E6%9C%9F/%E6%A9%9F%E9%9B%BB%E6%95%B4%E5%90%88%E6%8A%80%E8%A1%93(%E4%B8%80)/%E5%AF%A6%E4%BD%9C%E6%8A%80%E8%A1%93%E8%A3%9C%E5%85%85%E8%B3%87%E6%96%99/%E6%BF%BA%E9%8D%8D%E6%8A%80%E8%A1%93.pdf.
18.黃子文, "利用臨場 X 光反射率量測法研究 Ta2O5 薄膜結構與表面形貌之變化," 國立清華大學碩士論文. 2002.
19.Heilmann, R.K. and R.M. Suter, In situ specular and diffuse x-ray reflectivity study of growth dynamics in quench-condensed xenon films. Physical Review B, 1999. 59(4): p. 3075-3085.
20.Levinstein, H., The growth and structure of thin metallic films. Journal of Applied Physics, 1949. 20(4): p. 306-315.
21.Mattox, D.J.J.o.V.S., S. Technology A: Vacuum, and Films, Particle bombardment effects on thin‐film deposition: A review. Journal of Vacuum Science & Technology, 1989. 7(3): p. 1105-1114.
22.Karabacak, T., H. Guclu, and M.J.P.R.B. Yuksel, Network behavior in thin film growth dynamics. Physical Review B, 2009. 79(19): p. 195418.
23.F.C.Frank, and J.H.van der Merwe,Proc.Roy.Soc..London A 198,205 (1949).
24.M.Volmer, and A. Weber,Z.Phys.Chem. 119,277 (1926). .
25.I.N.Stranski, and Von L.Krastanow,Akad.Wiss.Lit.Mainz Math.Natur.K1.Iib 146,797 (1939). .
26.https://www.nsrrc.org.tw/.
27.李文麐, 東海大學碩士論文. 2010.
28.https://www.globalsino.com/EM/page3882.html.
29.汪建明主編, "材料分析," 中國材料學會.
30.http://physics.valpo.edu/staff/arichter/XRR.htm.
31.https://highscope.ch.ntu.edu.tw/wordpress/?p=1595.
32.Kanak, J., et al., X-ray diffraction analysis and Monte Carlo simulations of CoFeB-MgO based magnetic tunnel junctions. Journal of Applied Physics, 2013. 113(2): p. 6.
33.Yoneda, Y., Anomalous Surface Reflection of X Rays. Physical Review, 1963. 131(5): p. 2010-2013.
A1.蔡坤昇, 以磁控濺鍍製備鐵銠薄膜之研究, 清華大學碩士論文, 2015.
A2.Barua, R., F. Jimenez-Villacorta, and L.H. Lewis, Predicting magnetostructural trends in FeRh-based ternary systems. Applied Physics Letters, 2013. 103(10): p. 5.
A3.Loving, M.G., et al., Strain-tuning of the magnetocaloric transition temperature in model FeRh films. Journal of Physics D-Applied Physics, 2018. 51(2): p. 12.
A4.M.Goertz, J. Appl. Phys., 22,964 (1951).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *