帳號:guest(18.227.111.30)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施 芮
作者(外文):Peradi, Sneha Sundaran
論文名稱(中文):利用ε聚賴氨酸增強抗生素活性和改善絲素蛋白水凝膠的特性
論文名稱(外文):Utilization of epsilon-poly-L-lysine to enhance the antimicrobial activities of antibiotics and improve the properties of silk fibroin hydrogel
指導教授(中文):張晃猷
指導教授(外文):Chang, Hwan-You
口試委員(中文):張壯榮
王子威
鍾次文
林靖婷
口試委員(外文):Chang, Chuang-Rung
Wang, Tzu-Wei
Chung, Tze-Wen
Lin, Ching-Ting
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:105080859
出版年(民國):112
畢業學年度:112
語文別:英文
論文頁數:92
中文關鍵詞:使用ε-聚賴氨酸絲素蛋白
外文關鍵詞:Epsilon-poly-L-lysineSilk fibroinAntibacterialCombination therapyPhotopolymerisable hydrogelMammalian cell attachment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
使用ε-聚賴氨酸(EPL)和抗生素聯合治療常見傷口病原體感染,以及使用EPL和絲素蛋白(SF)製備傷口修復光聚合水凝膠是本論文的兩個重點。EPL 是一種常用的抗菌肽,對哺乳動物具低毒性,可應用在於食品添加劑,以及作為細菌脂多醣的有效吸附劑。最近的研究也證實EPL具促進哺乳動物細胞附著的能力。
本論文首先探討 EPL 是否可以增強特定抗生素(即氨芐青黴素 (AMP)、慶大霉素 (GEN) 和四環素 (TCN))針對四種重要傷口感染細菌的功效:綠膿桿菌、肺炎克雷伯菌、甲氧西林(MET)敏感金黃色葡萄球菌(MSSA)和甲氧西林耐藥葡萄球菌金黃色葡萄球菌(MRSA),同時還研究了 EPL 提高甲氧西林對抗 MRSA 有效性的潛力。本論文採用棋盤法來評估 EPL 與每種抗生素在次最低抑制濃度下的組合效果。AMP-EPL、GEN-EPL 和 TCN-EPL 組合表現出針對綠膿桿菌、MSSA、肺炎克雷伯菌和MRSA部分協同作用或累加效應。此外,MET-EPL 還表現出針對 MRSA 的部分協同作用。通過活/死螢光染色和活細胞計數證實,在抗生素-EPL治療的情況下,觀察到細菌活力顯著下降。在這些組合中,GEN-EPL對MSSA表現出最有效的抗菌作用,在一小時內有效消除細菌。相反,AMP、MET與EPL的組合對抗MRSA以及TCN-EPL 對抗肺炎克雷伯菌的效果最差,需要十多個小時才能根除細菌生長。所有抗生素-EPL 處理均表現出對綠膿桿菌生物膜形成的抑制活性,並增強體外預先形成的生物膜破壞。在豬皮膚模型上也觀察到了類似的生物膜形成抑制作用。重要的是,當用 Balb/3t3 成纖維細胞進行測試時,在任何抗生素-EPL治療中均未檢測到顯著的細胞毒性。這些發現凸顯了EPL作為抗生素輔助療法的潛力,可增強抗生素對抗細菌傷口病原體的有效性,同時還能控制生物膜生成,而不損害哺乳動物細胞活力。
良好的傷口癒合水凝膠必須具有有效的抗菌特性,並能為細胞粘附和增殖創造有利的環境。儘管SF具有傷口癒合特性,但它缺乏這些基本品質。這項研究的第二個目的是利用SF和EPL的特性來製造可光聚合水凝膠用於傷口修復。利用三種不同濃度的甲基丙烯酸縮水甘油酯(GMA)對 SF進行修飾,產生SF-GMA(L)、SF-GMA(M)和SF-GMA(H)衍生物。此外,也將EPL修飾GMA (EPL-GMA)。隨後,將 SF-GMA 與 EPL-GMA 混合,形成可光交聯的 SF-GMA-EPL 水凝膠。含有20% EPL-GMA的水凝膠SF-GMA(L)-EPL、SF-GMA(M)-EPL和SF-GMA(H)-EP在所有製備的水凝膠樣品中表現出最高的抗菌活性和哺乳動物細胞粘附能力。此些水凝膠的羥基自由基(·OH)清除效率範圍在69%至74%之間,在去除細菌脂多醣方面的效率則約為60%。水凝膠的吸水能力與其內部孔隙的大小相關。這些水凝膠降解緩慢,其降解產物具有細胞相容性。此外,水凝膠表現出彈性特性,儲能模量(G')範圍為300至600 Pa。總結而言,本研究開發的水凝膠表現出出色的生物和物理特性,使其非常適合作為促進傷口癒合用敷料。
The development of combination therapy against common wound pathogens by using Epsilon-ply-L-lysine (EPL) and antibiotics, and the fabrication of wound repair photopolymerizable hydrogel by using EPL and silk fibroin (SF) are the two focuses of this dissertation. EPL is an often-used antimicrobial peptide known for its low mammalian toxicity. Its primary application lies in the realm of food additives, and it serves as an effective adsorbent for bacterial lipopolysaccharides (LPS). Notably, recent studies have unveiled an additional intriguing property of EPL, showcasing its capability for promoting mammalian cell attachment.
In the initial phase of this study, I examined whether EPL enhances the efficacy of specific antibiotics, namely ampicillin (AMP), gentamicin (GEN), and tetracycline (TCN), against four significant bacterial wound pathogens: Pseudomonas aeruginosa PAO1, Klebsiella pneumoniae CG43, methicillin-sensitive Staphylococcus aureus (MSSA) ATCC 25923, and methicillin-resistant Staphylococcus aureus (MRSA) ATCC 33591. Additionally, the potential of EPL to improve the effectiveness of methicillin (MET) against MRSA was investigated. The checkerboard approach was employed to assess the combinatorial effects of EPL with each antibiotic at sub-minimal inhibitory concentrations. AMP-EPL, GEN-EPL, and TCN-EPL combinations exhibited activity against P. aeruginosa, K. pneumoniae, MSSA, and MRSA, with outcomes ranging from synergy to partial synergy or additive effects. Additionally, MET-EPL demonstrated partial synergy against MRSA. A noteworthy decrease in bacterial viability was observed in the presence of antibiotic-EPL treatments, as confirmed through live/dead fluorescence staining and viable cell counts. Among these combinations, GEN-EPL exhibited the most potent antimicrobial effect against MSSA, effectively eliminating the bacteria within one hour. Conversely, the combinations of AMP and MET with EPL against MRSA, as well as TCN-EPL against K. pneumoniae, were identified as the least potent, requiring over 10 hours to eradicate bacterial growth. All antibiotic-EPL treatments exhibited inhibitory activity against P. aeruginosa biofilm formation and enhancement of preformed biofilm disruption in vitro. A similar inhibition of biofilm formation on a porcine skin model was also observed. Importantly, no significant cytotoxicity was detected in any of the antibiotic-EPL treatments when tested with Balb/3t3 fibroblasts. These findings highlight the potential of EPL to enhance the effectiveness of antibiotics against bacterial wound pathogens while also promoting biofilm control without compromising mammalian cell viability.
To achieve an optimal wound-healing hydrogel, it is imperative to possess effective antibacterial properties and create a conducive environment for cell adhesion and proliferation. Despite Bombyx mori SF exhibiting inherent wound-healing properties, it lacks these essential qualities. The second aim of this study is to fabricate photo-polymerizable hydrogel by utilizing the properties of SF and EPL for wound repair. Three different concentrations of glycidyl methacrylate (GMA) were utilized to modify SF, resulting in SF-GMA(L), SF-GMA(M), and SF-GMA(H) derivatives. Additionally, a methacrylated form of EPL, i.e., (EPL-GMA) was synthesized. Subsequently, SF-GMA was blended with EPL-GMA to create photo-crosslinkable SF-GMA-EPL hydrogels. The hydrogels SF-GMA(L)-EPL, SF-GMA(M)-EPL, and SF-GMA(H)-EPL, containing 20% EPL-GMA, exhibited the highest levels of antimicrobial activity and mammalian cell adhesion ability among all the fabricated hydrogel samples. The hydrogels were evaluated for their •OH radical scavenging efficiency, which was found to range between 69% and 74%. Additionally, these hydrogels displayed a 60% efficiency in the removal of bacterial lipopolysaccharides. The water absorption capacity of the hydrogels aligned with the size of their internal pores. These hydrogels demonstrated a gradual degradation pattern, and the degradation products were found to be cytocompatible. Furthermore, the hydrogels exhibited elastomeric properties, with a storage modulus (G') ranging from 300 to 600 Pa. In conclusion, the hydrogels developed in this study showcase outstanding biological and physical characteristics, making them well-suited to facilitate wound healing.
Acknowledgments i
摘要 ii
Abstract iv
Abbreviation vi
Table of contents viii
List of figures xi
List of tables xv
Chapter 1. Introduction and review of literature 1
1. 1 Antimicrobial peptide 2
1. 1. 1 Epsilon-poly-L-lysine 3
1. 1. 1. 1 Mechanism of antibacterial action of EPL 4
1. 1. 1. 2 Biomedical applications of EPL 5
1. 2 Antibiotic resistance 8
1. 3 Other Serious Side effects of antibiotic use 9
1. 4 Combination therapy to treat bacterial infection 10
1. 4. 1 Combination of AP and antibiotics 10
1. 4. 1. 1 Antibacterial mechanism of AP and antibiotic combination 11
1. 4. 1. 2 EPL in combination study 13
1. 5 Silk 15
1. 5. 1 B. mori SF 16
1. 5. 1. 1 Wound healing and SF in wound healing 17
1. 6 Photopolymerizable hydrogel 19
1. 6. 1 SF-GMA-based photopolymerizable hydrogel 20
1. 6. 2 EPL-GMA-based photopolymerizable hydrogel 20
Chapter 2. Combination effect of epsilon-poly-L-lysine and antibiotics against common bacterial pathogens 22
2. 1 Introduction 23
2. 2 Materials and Methods 24
2. 2. 1 Bacterial strain and culture condition 24
2. 2. 2 Chemicals and antimicrobial agents 25
2. 2. 3 EPL spotting assay 25
2. 2. 4 Determination of minimum inhibitory concentration 25
2. 2. 5 Checkerboard assay and fractional inhibitory concentration 25
2. 2. 6 Fluorescence spectroscopy and microscopy analysis 26
2. 2. 7 Time-kill assay 26
2. 2. 8 In vitro anti-biofilm assay 27
2. 2. 9 Ex vivo anti-biofilm assay 27
2. 2. 9 Cytotoxicity 27
2. 3 Results and Discussion 28
2. 3. 1 Bacterial susceptibility towards EPL and antibiotics 28
2. 3. 2 Combinatorial effects of EPL and commonly used antibiotics on bacterial growth 30
2. 3. 3 Antibiotic-EPL combination on total bacterial count and cell viability 33
2. 3. 4 Effect of treatment time on antibiotic-EPL antibacterial efficiency 35
2. 3. 5 Effect of antibiotic-EPL on P. aeruginosa biofilm under in vitro condition 37
2. 3. 6 Effect of antibiotic-EPL on P. aeruginosa biofilm under ex vitro condition 39
2. 3. 7 Antibiotic-EPL cytocompatibility study on Balb/3t3 cell 40
2. 4 Conclusion 42
Chapter 3. Fabrication and in vitro evaluation of photo crosslinkable Silk fibroin –Epsilon-poly-L-lysine hydrogel for wound repair 43
3. 1 Introduction 44
3. 2 Materials and Methods 46
3. 2. 1 Extraction of SF fibers from B. mori cocoon 46
3. 2. 2. Preparation and storage of SF solution 46
3. 2. 3 Synthesis of SF-GMA and EPL-GMA graft polymers 46
3. 2. 4 Evaluation of GMA grafting on SF and EPL by FTIR and NMR 47
3. 2. 5. Fabrication of SF-GMA-EPL hydrogel by photopolymerization 48
3. 2. 6 Antibacterial properties of SF-GMA-EPL hydrogel 48
3. 2. 7 Cell attachment and proliferation on SF-GMA-EPL hydrogel 49
3. 2. 8 Hydroxyl radicle scavenging activity of SF-GMA-EPL hydrogel 50
3. 2. 9 Determination of bacterial LPS removal by SF-GMA-EPL hydrogel 50
3. 2. 10 Degradation of SF-GMA-EPL hydrogel and cytotoxicity of degradation product 50
3. 2. 11 Scanning electron microscopy analysis of SF-GMA-EPL hydrogel 51
3. 2. 12 Swelling ratio of SF-GMA-EPL hydrogel 51
3. 2. 13 Rheological analysis of SF-GMA-EPL hydrogel 52
3. 3 Results and discussion 52
3. 3. 1 Extraction of SF fibers and preparation of SF solution 52
3. 3. 2 Preparation of SF-GMA and EPL-GMA graft polymers and SF-GMA-EPL hydrogel 53
3. 3. 3. Evaluation of SF-GMA and EPL-GMA polymers 54
3. 3. 4 Antibacterial efficiencies of SF-GMA-EPL hydrogel 57
3. 3. 5 Bacterial growth inhibition dynamics of SF-GMA-EPL hydrogel 60
3. 3. 6 Cell attachment and proliferation on SF-GMA-EPL hydrogel 61
3. 3. 7 LPS adsorption and OH radicle scavenging ability of SF-GMA-EPL hydrogel 65
3. 3. 8 Degradation ratio of SF-GMA-EPL hydrogel 66
3. 3. 9 Physical characterization of SF-GMA-EPL hydrogel 68
3. 4 Conclusion 71
Chapter 4. Future perspectives 73
References 75
Publication list 92
[1] Nakatsuji T and Gallo R L 2012 Antimicrobial peptides: old molecules with new ideas J. Invest. Dermatol. 132 887-95
[2] Giacometti A, Cirioni O, Barchiesi F, Fortuna M and Scalise G 1999 In-vitro activity of cationic peptides alone and in combination with clinically used antimicrobial agents against Pseudomonas aeruginosa J. Antimicrob. Chemother. 44 641-5
[3] Luo Y and Song Y 2021 Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities Int. J. Mol. Sci. 22 11401
[4] Gao X, Ding J, Liao C, Xu J, Liu X and Lu W 2021 Defensins: The natural peptide antibiotic Ad. Drug deliv. rev. 179 114008
[5] Wei Y, Wu J, Chen Y, Fan K, Yu X, Li X, Zhao Y, Li Y, Lv G, Song G, Rong X, Lin C, Wang H, Chen X, Zhang P, Han C, Zu H, Liu W, Zhang Y, Liu C, Su Y, Zhang B, Sun B, Wang L, Lai W, Liu J, Xia C, Ji G, Zhu F, Yu J, Ahemaiti A, Dong H and Chen M 2023 Efficacy and safety of PL-5 (Peceleganan) spray for wound infections: A phase IIb randomized clinical trial Ann. Surg. 277 43-9
[6] van der Velden W J F M, van Iersel T M P, Blijlevens N M A and Donnelly J P 2009 Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11) BMC Medi. 7 44
[7] Wiesner J and Vilcinskas A 2010 Antimicrobial peptides: the ancient arm of the human immune system Virulence 1 440-64
[8] Zhang F, Cui X, Fu Y, Zhang J, Zhou Y, Sun Y, Wang X, Li Y, Liu Q and Chen T 2017 Antimicrobial activity and mechanism of the human milk-sourced peptide Casein201 Biochem. Biophys. Res. Commun. 485 698-704
[9] Kim M K, Kang N, Ko S J, Park J, Park E, Shin D W, Kim S H, Lee S A, Lee J I, Lee S H, Ha E G, Jeon S H and Park Y 2018 Antibacterial and antibiofilm activity and mode of action of magainin 2 against drug-resistant acinetobacter baumannii Int. J. Mol. Sci. 19
[10] Lu Y, Ma Y, Wang X, Liang J, Zhang C, Zhang K, Lin G and Lai R 2008 The first antimicrobial peptide from sea amphibian Mol. Immunol. 45 678-81
[11] Moore A J, Beazley W D, Bibby M C and Devine D A 1996 Antimicrobial activity of cecropins J. Antimicrob. Chemother. 37 1077-89
[12] Brudzynski K and Sjaarda C 2015 Honey glycoproteins containing antimicrobial peptides, Jelleins of the Major Royal Jelly Protein 1, are responsible for the cell wall lytic and bactericidal activities of honey PloS one 10 e0120238
[13] Huan Y, Kong Q, Mou H and Yi H 2020 Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields Front. Microbiol. 11 582779
[14] Shin J M, Gwak J W, Kamarajan P, Fenno J C, Rickard A H and Kapila Y L 2016 Biomedical applications of nisin J. Appl. Microbiol. 120 1449-65
[15] Liou J W, Hung Y J, Yang C H and Chen Y C 2015 The antimicrobial activity of gramicidin A is associated with hydroxyl radical formation PLoS One 10 e0117065
[16] Ye R, Xu H, Wan C, Peng S, Wang L, Xu H, Aguilar Z P, Xiong Y, Zeng Z and Wei H 2013 Antibacterial activity and mechanism of action of ε-poly-l-lysine Biochem. Biophys. Res. Commun. 439 148-53
[17] Yamanaka K and Hamano Y 2019 Draft genome sequence of the most traditional ε-poly-l-lysine producer, Streptomyces albulus NBRC14147 Microbiol. Resour. Announc. 8 e01515-18
[18] Yoshida T and Nagasawa T 2003 ε-Poly-l-lysine: microbial production, biodegradation and application potential Appl. Microbiol. biotechnol. 62 21-6
[19] Yamanaka K, Kito N, Imokawa Y, Maruyama C, Utagawa T and Hamano Y 2010 Mechanism of epsilon-poly-L-lysine production and accumulation revealed by identification and analysis of an epsilon-poly-L-lysine-degrading enzyme Appl. Environ. Microbiol. 76 5669-75
[20] Shima S, Matsuoka H, Iwamoto T and Sakai H 1984 Antimicrobial action of epsilon-poly-L-lysine J. Antibiot. 37 1449-55
[21] Hyldgaard M, Mygind T, Vad B S, Stenvang M, Otzen D E and Meyer R L 2014 The antimicrobial mechanism of action of epsilon-poly-l-lysine Appl. Environ. Microbiol. 80 7758-70
[22] Kawai T, Kubota T, Hiraki J and Izumi Y 2003 Biosynthesis of ε-poly-l-lysine in a cell-free system of Streptomyces albulus Biochem. Biophys. Res. Commun. 311 635-40
[23] Li Y-Q, Han Q, Feng J-L, Tian W-L and Mo H-Z 2014 Antibacterial characteristics and mechanisms of ɛ-poly-lysine against Escherichia coli and Staphylococcus aureus Food Control 43 22-7
[24] Geornaras I, Yoon Y, Belk K, Smith G and Sofos J 2007 Antimicrobial activity of ɛ‐polylysine against Escherichia coli O157: H7, Salmonella typhimurium, and Listeria monocytogenes in various food extracts Journal of Food Sci. 72 M330-M4
[25] Gao C, Yan T, Du J, He F, Luo H and Wan Y 2014 Introduction of broad spectrum antibacterial properties to bacterial cellulose nanofibers via immobilising ε-polylysine nanocoatings Food Hydrocoll. 36 204-11
[26] Tan Z, Shi Y, Xing B, Hou Y, Cui J and Jia S 2019 The antimicrobial effects and mechanism of ε-poly-lysine against Staphylococcus aureus Bioresour. Bioprocess. 6 1-10
[27] Zhou C, Li P, Qi X, Sharif A R M, Poon Y F, Cao Y, Chang M W, Leong S S J and Chan-Park M B 2011 A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine Biomaterials 32 2704-12
[28] Pati B A, Kurata W E, Horseman T S and Pierce L M 2021 Antibiofilm activity of chitosan/epsilon‐poly‐L‐lysine hydrogels in a porcine ex vivo skin wound polymicrobial biofilm model Wound Repair Regen. 29 316-26
[29] Wu H, Hu S, Nie C, Zhang J, Tian H, Hu W, Shen T and Wang J 2021 Fabrication and characterization of antibacterial epsilon-poly-L-lysine anchored dicarboxyl cellulose beads Carbohydr. Polym. 255 117337
[30] Yang H, Xie X, Li X and Bai Y 2023 Polymethyl methacrylate resin containing ε-poly-L-lysine and 2-methacryloyloxyethyl phosphorylcholine with antimicrobial effects J. Prosthet. Dent. 129 228.e1-.e8
[31] Shahriari-Khalaji M, Li G, Liu L, Sattar M, Chen L, Zhong C and Hong F F 2022 A poly-l-lysine-bonded TEMPO-oxidized bacterial nanocellulose-based antibacterial dressing for infected wound treatment Carbohydr. Polym. 287 119266
[32] Li C, Zhang Q, Lan D, Cai M, Liu Z, Dai F and Cheng L 2022 ε-Poly-l-lysine-modified natural silk fiber membrane wound dressings with improved antimicrobial properties Int. J. Biol. Macromol. 220 1049-59
[33] Shi K, Liu Y, Ke L, Fang Y, Yang R and Cui F 2015 Epsilon-poly-l-lysine guided improving pulmonary delivery of supramolecular self-assembled insulin nanospheres Int. J. Biol. Macromol. 72 1441-50
[34] Lin J, Hu W, Gao T, Bao B, Li X, Huang T, Sun Y, Shen J, Xu H, Zhu K, Zhu H, Yang Y and Zheng X 2022 ε-Poly-l-lysine as an efficient cartilage penetrating and residing drug carrier with high intraarticular injection safety for treating osteoarthritis Chem. Eng. J. 430 133018
[35] Cho H, Choi Y S, Choung D G, Choi W G, Lee M S, Cho Y-Y, Lee J Y, Lee H S and Kang H C 2023 ε-Poly(l-lysine)-based bioreducible nanogels for mitochondria-targeted delivery and release: Hydrophobicity-tuned nucleus-to-mitochondria organelle-targeting switch and slow disulfide cleavage Chem. Eng. J. 456 141090
[36] Forte J, Hanieh P N, Poerio N, Olimpieri T, Ammendolia M G, Fraziano M, Fabiano M G, Marianecci C, Carafa M and Bordi F 2023 Mucoadhesive rifampicin-liposomes for the treatment of pulmonary infection by mycobacterium abscessus: chitosan or ε-poly-l-lysine decoration Biomolecules 13 924
[37] Mandal H, Katiyar S S, Swami R, Kushwah V, Katare P B, Kumar Meka A, Banerjee S K, Popat A and Jain S 2018 ε-Poly-l-Lysine/plasmid DNA nanoplexes for efficient gene delivery in vivo Int. J. Pharm. 542 142-52
[38] Zhao D, Tu A T T, Shobo M, Le N B T, Yoshikawa C, Sugai K, Hakamata Y and Yamazaki T 2022 Non-modified CpG oligodeoxynucleotide forming guanine-quadruplex structure complexes with ε-poly-l-lysine induce antibody production as vaccine adjuvants Biomolecules 12 1868
[39] Tyers M and Wright G D 2019 Drug combinations: a strategy to extend the life of antibiotics in the 21st century Nat. Rev. Microbiol. 17 141-55
[40] Laxminarayan R, Duse A, Wattal C, Zaidi A K, Wertheim H F, Sumpradit N, Vlieghe E, Hara G L, Gould I M and Goossens H 2013 Antibiotic resistance-the need for global solutions Lancet Infect. Dis. 13 1057-98
[41] Li G, Lai Z and Shan A 2023 Advances of Antimicrobial peptide‐based biomaterials for the treatment of bacterial infections Adv. Sci. 10 e2206602
[42] Darby E M, Trampari E, Siasat P, Gaya M S, Alav I, Webber M A and Blair J M A 2023 Molecular mechanisms of antibiotic resistance revisited Nat. Rev. Microbiol. 21 280-95
[43] Ford C, Zurenko G and Barbachyn M 2001 The discovery of linezolid, the first oxazolidinone antibacterial agent Curr. Drug Targets Infect. Disord. 1 181-99
[44] Sabtu N, Enoch D A and Brown N M 2015 Antibiotic resistance: what, why, where, when and how? Br. Med. Bull. 116 105-13
[45] Coates A R, Hu Y, Holt J and Yeh P 2020 Antibiotic combination therapy against resistant bacterial infections: synergy, rejuvenation and resistance reduction Expert rev. Anti. Infect. Ther. 18 5-15
[46] Chakraborty N, Jha D, Roy I, Kumar P, Gaurav S S, Marimuthu K, Ng O-T, Lakshminarayanan R, Verma N K and Gautam H K 2022 Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies J. Nanobiotechnology 20 375
[47] Mohsen S, Dickinson J A and Somayaji R 2020 Update on the adverse effects of antimicrobial therapies in community practice Can. Fam. Physician 66 651-9
[48] Vanoverschelde A, Oosterloo B C, Ly N F, Ikram M A, Goedegebure A, Stricker B H and Lahousse L 2021 Macrolide-associated ototoxicity: a cross-sectional and longitudinal study to assess the association of macrolide use with tinnitus and hearing loss J. Antimicrob. Chemother. 76 2708-16
[49] Etminan M, Westerberg B D, Kozak F K, Guo M Y and Carleton B C 2017 Risk of sensorineural hearing loss with macrolide antibiotics: A nested case‐control study Laryngoscope. 127 229-32
[50] Giudicessi J R and Ackerman M J 2013 Azithromycin and risk of sudden cardiac death: guilty as charged or falsely accused? Cleve. Clin. J. Med 80 539
[51] Svanström H, Pasternak B and Hviid A 2014 Use of clarithromycin and roxithromycin and risk of cardiac death: cohort study BMJ 349 g4930
[52] Koraysh S, Koleri J and Ali M 2023 Cefepime-Induced Neutropenia: A case report and literature review Clin. Pharmacol.15 33-40
[53] Cunha J S and Reginato A M 2023 Bilateral achilles tendinopathy and rupture with fluoroquinolone Use J. Clin. Rheumatol. 10-97
[54] Iba Y and Kawaharada N 2023 Patient Factors and Pathological mechanisms influencing the effects of fluoroquinolones among patients with aortic aneurysm and dissection Cir. J. 87 1173-74
[55] Hussen N H A, Qadir S H, Rahman H S, Hamalaw Y Y, Kareem P S S and Hamza B A 2023 Long-term toxicity of fluoroquinolones: a comprehensive review Drug Chem. Toxicol. 28 1-12
[56] Shapiro L E, Knowles S R and Shear N H 1997 Comparative safety of tetracycline, minocycline, and doxycycline Arch. Dermatol. 133 1224-30
[57] Dekitani K, Nouri Kolouri M and Rojanapairat O 2023 Toxycology and other medications in the ICU: Case reports (American Thoracic Society) 3504
[58] Sheard D E, O’Brien-Simpson N M, Wade J D and Separovic F 2019 Combating bacterial resistance by combination of antibiotics with antimicrobial peptides Pure Appl. Chem. 91 199-209
[59] Iseman M D 2007 Extensively drug-resistant Mycobacterium tuberculosis: Charles Darwin would understand Clin. Infect. Dis 45 1415-6
[60] Jawetz E, Gunnison J, Bruff J and Coleman V 1952 Studies on antibiotic synergism and antagonism: Synergism among seven antibiotics against various bacteria in vitro J. Bacteriol. 64 29-39
[61] Bushby S R and Hitchings G H 1968 Trimethoprim, a sulphonamide potentiator Br. J. Pharmacol. Chemother. 33 72-90
[62] Noordeen S K 2016 History of chemotherapy of leprosy Clin. Dermatol. 34 32-6
[63] Hilliard J J, Datta V, Tkaczyk C, Hamilton M, Sadowska A, Jones-Nelson O, O'Day T, Weiss W J, Szarka S and Nguyen V 2015 Anti-alpha-toxin monoclonal antibody and antibiotic combination therapy improves disease outcome and accelerates healing in a Staphylococcus aureus dermonecrosis model Antimicrob. Agents Chemother. 59 299-309
[64] Huang W, Zhang Q, Li W, Chen Y, Shu C, Li Q, Zhou J, Ye C, Bai H and Sun W 2019 Anti-outer membrane vesicle antibodies increase antibiotic sensitivity of pan-drug-resistant Acinetobacter baumannii Front. Microbiol. 10 1379
[65] Xiong Y Q, Estellés A, Li L, Abdelhady W, Gonzales R, Bayer A S, Tenorio E, Leighton A, Ryser S and Kauvar L M 2017 A human biofilm-disrupting monoclonal antibody potentiates antibiotic efficacy in rodent models of both Staphylococcus aureus and Acinetobacter baumannii infections Antimicrob. Agents Chemother. 61 e00904-17
[66] Song Y, Baer M, Srinivasan R, Lima J, Yarranton G, Bebbington C and Lynch S 2012 PcrV antibody–antibiotic combination improves survival in Pseudomonas aeruginosa-infected mice Eur. J. Clin. Microbiol. Infect. Dis. 31 1837-45
[67] Razavi S, Haghighat F N, Hemmati A, Akhavan M M, Jeddi-Tehrani M and Irajian G 2021 Monoclonal antibody directed to the PilQ-PilA DSL region in Pseudomonas aeruginosa improves survival of infected mice with antibiotic combination Microb. Pathog. 158 105060
[68] Nir-Paz R, Gelman D, Khouri A, Sisson B M, Fackler J, Alkalay-Oren S, Khalifa L, Rimon A, Yerushalmy O and Bader R 2019 Successful treatment of antibiotic-resistant, poly-microbial bone infection with bacteriophages and antibiotics combination Clin. Infect. Dis. 69 2015-8
[69] Gelman D, Beyth S, Lerer V, Adler K, Poradosu-Cohen R, Coppenhagen-Glazer S and Hazan R 2018 Combined bacteriophages and antibiotics as an efficient therapy against VRE Enterococcus faecalis in a mouse model Res. Microbiol. 169 531-9
[70] Luscher A, Simonin J, Falconnet L, Valot B, Hocquet D, Chanson M, Resch G, Köhler T and van Delden C 2020 Combined bacteriophage and antibiotic treatment prevents Pseudomonas aeruginosa infection of wild type and cftr-epithelial cells Front. Microbiol. 11 1947
[71] Petsong K, Uddin M J, Vongkamjan K and Ahn J 2018 Combined effect of bacteriophage and antibiotic on the inhibition of the development of antibiotic resistance in Salmonella typhimurium Food Sci. Biotechnol. 27 1239-44
[72] Naqvi S Z H, Kiran U, Ali M I, Jamal A, Hameed A, Ahmed S and Ali N 2013 Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria Int. J. Nanomedicine 8 3187-95
[73] Esmaeillou M, Zarrini G, Rezaee M A and Bahadori A 2017 Vancomycin capped with silver nanoparticles as an antibacterial agent against multi-drug resistance bacteria Adv. Pharm. Bull. 7 479
[74] Kalhapure R S, Sonawane S J, Sikwal D R, Jadhav M, Rambharose S, Mocktar C and Govender T 2015 Solid lipid nanoparticles of clotrimazole silver complex: an efficient nano antibacterial against Staphylococcus aureus and MRSA Colloids. Surf. B Biointerfaces 136 651-8
[75] Lomovskaya O, Tsivkovski R, Nelson K, Rubio-Aparicio D, Sun D, Totrov M and Dudley M N 2020 Spectrum of beta-lactamase inhibition by the cyclic boronate QPX7728, an ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases: enhancement of activity of multiple antibiotics against Isogenic strains expressing single beta-lactamases Antimicrob. Agents Chemother. 64 e00212-20
[76] Lomovskaya O, Rubio-Aparicio D, Tsivkovski R, Loutit J and Dudley M 2022 The ultrabroad-spectrum beta-lactamase inhibitor QPX7728 restores the potency of multiple oral beta-lactam antibiotics against beta-lactamase-producing strains of resistant Enterobacterales Antimicrob. Agents Chemother. 66 e02168-21
[77] Adamson D H, Krikstopaityte V and Coote P J 2015 Enhanced efficacy of putative efflux pump inhibitor/antibiotic combination treatments versus MDR strains of Pseudomonas aeruginosa in a Galleria mellonella in vivo infection model J. Antimicrob. Chemother. 70 2271-8
[78] Tambat R, Mahey N, Chandal N, Verma D K, Jangra M, Thakur K G and Nandanwar H 2022 A microbe-derived efflux pump inhibitor of the resistance-nodulation-cell division protein restores antibiotic susceptibility in Escherichia coli and Pseudomonas aeruginosa ACS Infect. Dis. 8 255-70
[79] Lewies A, Du Plessis L H and Wentzel J F 2019 Antimicrobial peptides: the Achilles’ heel of antibiotic resistance? Probiotics. Antimicrob. proteins 11 370-81
[80] Wang J, Ma X, Li J, Shi L, Liu L, Hou X, Jiang S, Li P, Lv J and Han L 2023 The synergistic antimicrobial effect and mechanism of nisin and oxacillin against methicillin-resistant staphylococcus aureus Int. J. Mol. Sci. 24 6697
[81] Field D, Seisling N, Cotter P D, Ross R P and Hill C 2016 Synergistic nisin-polymyxin combinations for the control of Pseudomonas biofilm formation Front. Microbiol. 7 1713
[82] Minahk C J, Dupuy F and Morero R D 2004 Enhancement of antibiotic activity by sub-lethal concentrations of enterocin CRL35 J. Antimicrob. Chemother. 53 240-6
[83] Belguesmia Y, Spano G and Drider D 2021 Potentiating effects of leaderless enterocin DD14 in combination with methicillin on clinical methicillin-resistant Staphylococcus aureus S1 strain Microbio. Res. 252 126864
[84] Naghmouchi K, Baah J, Hober D, Jouy E, Rubrecht C, Sané F and Drider D 2013 Synergistic effect between colistin and bacteriocins in controlling Gram-negative pathogens and their potential to reduce antibiotic toxicity in mammalian epithelial cells Antimicrob. Agents Chemother. 57 2719-25
[85] Zharkova M S, Orlov D S, Golubeva O Y, Chakchir O B, Eliseev I E, Grinchuk T M and Shamova O V 2019 Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics-A novel way to combat antibiotic resistance? Front. Cell. Infect. Microbiol. 9 128
[86] Zhou Y and Peng Y 2013 Synergistic effect of clinically used antibiotics and peptide antibiotics against Gram-positive and Gram-negative bacteria Exp. Ther. Med. 6 1000-4
[87] Giacometti A, Cirioni O, Del Prete M S, Barchiesi F, Paggi A M, Petrelli E and Scalise G 2000 Comparative activities of polycationic peptides and clinically used antimicrobial agents against multidrug-resistant nosocomial isolates of Acinetobacter baumannii J. Antimicrob. Chemother. 46 807-10
[88] Zasloff M 1987 Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor Proc. Natl. Acad. Sci. 84 5449-53
[89] Cirioni O, Giacometti A, Silvestri C, Della Vittoria A, Licci A, Riva A and Scalise G 2006 In vitro activities of tritrpticin alone and in combination with other antimicrobial agents against Pseudomonas aeruginosa Antimicrob. Agents Chemother. 50 3923-5
[90] Abdul Ghaffar K, M Hussein W, G Khalil Z, J Capon R, Skwarczynski M and Toth I 2015 Levofloxacin and indolicidin for combination antimicrobial therapy Curr. Drug Deliv. 12 108-14
[91] Marchand C, Krajewski K, Lee H-F, Antony S, Johnson A A, Amin R, Roller P, Kvaratskhelia M and Pommier Y 2006 Covalent binding of the natural antimicrobial peptide indolicidin to DNA abasic sites Nucleic Acids res. 34 5157-65
[92] Otvos L, O I, Rogers M E, Consolvo P J, Condie B A, Lovas S, Bulet P and Blaszczyk-Thurin M 2000 Interaction between heat shock proteins and antimicrobial peptides Biochemistry 39 14150-9
[93] Boehr D D, Draker K-a, Koteva K, Bains M, Hancock R E and Wright G D 2003 Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes Chem. biol. 10 189-96
[94] Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H and Wang Y 2022 Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug‐resistant infections Med. Res. Rev. 42 1377-422
[95] Shi C, Zhao X, Liu Z, Meng R, Chen X and Guo N 2016 Antimicrobial, antioxidant, and antitumor activity of epsilon-poly-L-lysine and citral, alone or in combination Food Nutr. Res. 60 31891
[96] Hyldgaard M, Meyer R L, Peng M, Hibberd A A, Fischer J, Sigmundsson A and Mygind T 2015 Binary combination of epsilon-poly-L-lysine and isoeugenol affect progression of spoilage microbiota in fresh turkey meat, and delay onset of spoilage in Pseudomonas putida challenged meat Int. J. Food microbiol. 215 131-42
[97] Yu J, Cen D, Chen Y, Zhao H, Xu M, Wu S, Wang S, Jin Q and Shen T 2023 Epsilon-poly-l-lysine conjugated erythromycin for enhanced antibiotic therapy RSC Adv. 13 18651-7
[98] Guzel Kaya G, Medaglia S, Candela-Noguera V, Tormo-Mas M Á, Marcos M D, Aznar E, Deveci H and Martínez-Máñez R 2020 Antibacterial activity of linezolid against gram-negative bacteria: utilization of ε-poly-l-lysine capped silica xerogel as an activating carrier Pharmaceutics 12 1126
[99] Birajdar M S, Joo H, Koh W-G and Park H 2021 Natural bio-based monomers for biomedical applications: a review Biomater. Res. 25 8
[100] Holland C, Numata K, Rnjak‐Kovacina J and Seib F P 2019 The biomedical use of silk: past, present, future Adv. Healthc. Mater. 8 1800465
[101] Sun W, Gregory D A, Tomeh M A and Zhao X 2021 Silk fibroin as a functional biomaterial for tissue engineering Int. Journal Mol. Sci. 22 1499
[102] Humenik M, Lang G and Scheibel T 2018 Silk nanofibril self‐assembly versus electrospinning Wiley Interdiscip. Rev. Nanomed. 10 e1509
[103] Vidya M and Rajagopal S 2021 Silk fibroin: a promising tool for wound healing and skin regeneration Int. J. Polym. Sci. 2021 1-10
[104] Patil P P, Reagan M R and Bohara R A 2020 Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings Int. J. Biol. Macromol. 164 4613-27
[105] Nguyen T P, Nguyen Q V, Nguyen V-H, Le T-H, Huynh V Q N, Vo D-V N, Trinh Q T, Kim S Y and Le Q V 2019 Silk fibroin-based biomaterials for biomedical applications: A review Polymers 11 1933
[106] Chen S, Liu M, Huang H, Cheng L and Zhao H-P 2019 Mechanical properties of Bombyx mori silkworm silk fibre and its corresponding silk fibroin filament: A comparative study Mater. Des. 181 108077
[107] Shao Z and Vollrath F 2002 Surprising strength of silkworm silk Nature 418 741
[108] Miller L D, Putthanarat S, Eby R and Adams W 1999 Investigation of the nanofibrillar morphology in silk fibers by small angle X-ray scattering and atomic force microscopy Internat. J. Biol. Macromol. 24 159-65
[109] Poza P, Perez-Rigueiro J, Elices M and Llorca J 2002 Fractographic analysis of silkworm and spider silk Eng. Fract. Mech. 69 1035-48
[110] DeBari M K and Abbott R D 2019 Microscopic considerations for optimizing silk biomaterials Wiley Interdiscip. Rev. Nanomed. 11 e1534
[111] Rockwood D N, Preda R C, Yücel T, Wang X, Lovett M L and Kaplan D L 2011 Materials fabrication from Bombyx mori silk fibroin Nat. Protoc. 6 1612-31
[112] Xu Z, Gao W and Bai H 2022 Silk-based bioinspired structural and functional materials Iscience 25 103940
[113] Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A and Kaplan D L 2018 Overview of silk fibroin use in wound dressings Trends. Biotechnol. 36 907-22
[114] Tang X, Ding F, Yang Y, Hu N, Wu H and Gu X 2009 Evaluation on in vitro biocompatibility of silk fibroin-based biomaterials with primarily cultured hippocampal neurons J. Biomed. Mater. Res. A 91A 166-74
[115] Wang Y, Rudym D D, Walsh A, Abrahamsen L, Kim H-J, Kim H S, Kirker-Head C and Kaplan D L 2008 In vivo degradation of three-dimensional silk fibroin scaffolds Biomaterials 29 3415-28
[116] Martínez-Mora C, Mrowiec A, García-Vizcaíno E M, Alcaraz A, Cenis J L and Nicolás F J 2012 Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun PLoS One 7 e42271
[117] Aykac A, Karanlik B and Sehirli A O 2018 Protective effect of silk fibroin in burn injury in rat model Gene 641 287-91
[118] Park Y R, Sultan M T, Park H J, Lee J M, Ju H W, Lee O J, Lee D J, Kaplan D L and Park C H 2018 NF-κB signaling is key in the wound healing processes of silk fibroin Acta Biomater. 67 183-95
[119] Ju H W, Lee O J, Lee J M, Moon B M, Park H J, Park Y R, Lee M C, Kim S H, Chao J R, Ki C S and Park C H 2016 Wound healing effect of electrospun silk fibroin nanomatrix in burn-model Int. J. Biol. Macromol. 85 29-39
[120] U.S Food and administration 2021 Gras Notification For Silk Protein Derived From Bombyx mori Cocoon.
[121] Sultan M T, Lee O J, Kim S H, Ju H W and Park C H 2018 Novel Biomaterials for Regenerative Medicine (Springer)115-26
[122] Winter G D 1962 Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig Nature 193 293-4
[123] Annabi N, Tamayol A, Uquillas J A, Akbari M, Bertassoni L E, Cha C, Camci‐Unal G, Dokmeci M R, Peppas N A and Khademhosseini A 2014 25th anniversary article: Rational design and applications of hydrogels in regenerative medicine Adv. Mater. 26 85-124
[124] Ahmed E M 2015 Hydrogel: Preparation, characterization, and applications: A review J. Adv. Research 6 105-21
[125] Ulijn R V, Bibi N, Jayawarna V, Thornton P D, Todd S J, Mart R J, Smith A M and Gough J E 2007 Bioresponsive hydrogels Mater. Today 10 40-8
[126] Hoffman A S 2012 Hydrogels for biomedical applications Ad. Drug Del. Rev. 64 18-23
[127] Peppas N A and Mikos A G 2019 Hydrogels in medicine and pharmacy (CRC press) 1-26
[128] Mirek A, Belaid H, Bartkowiak A, Barranger F, Salmeron F, Kajdan M, Grzeczkowicz M, Cavaillès V, Lewińska D and Bechelany M 2023 Gelatin methacrylate hydrogel with drug-loaded polymer microspheres as a new bioink for 3D bioprinting Biomater. Adv. 150 213436
[129] Kim S H, Yeon Y K, Lee J M, Chao J R, Lee Y J, Seo Y B, Sultan M T, Lee O J, Lee J S, Yoon S-i, Hong I-S, Khang G, Lee S J, Yoo J J and Park C H 2018 Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing Nat. Commun. 9 1620
[130] Wang Z, Yang Y, Gao Y, Xu Z, Yang S and Jin M 2022 Establishing a novel 3D printing bioinks system with recombinant human collagen Int. J. Biol. Macromol. 211 400-9
[131] Li Y, Zheng H, Liang Y, Xuan M, Liu G and Xie H 2022 Hyaluronic acid-methacrylic anhydride/polyhexamethylene biguanide hybrid hydrogel with antibacterial and proangiogenic functions for diabetic wound repair Chin. Chem. Lett. 33 5030-4
[132] Maji K, Dasgupta S, Bhaskar R and Gupta M K 2020 Photo-crosslinked alginate nano-hydroxyapatite paste for bone tissue engineering Biomed. Mater. 15 055019
[133] Lu Y, Xiang Z, Li N, Huang X and Song J 2022 Photocurable epsilon-poly-L-lysine for digital light processing 3D printing Mater. Lett. 318 132169
[134] Nascimento M F, Oliveira C R, Cardoso J C, Bordignon N C, Gondak R, Severino P, Souto E B and de Albuquerque Júnior R L 2023 UV-polymerizable methacrylated gelatin (GelMA)-based hydrogel containing tannic acids for wound healing Drug Deliv. Transl. Res. 1-16
[135] Li H, Fang Y, Liu F, He F and Tong Z Biomimetic injectable hydrogel based on methacrylate-modified silk fibroin embedded with kartogenin for superficial cartilage regeneration Heliyon 4468444
[136] Zhang L, Yuan Z, Shafiq M, Cai Y, Wang Z, Nie P, Mo X and Xu Y 2023 An injectable integration of autologous bioactive concentrated growth factor and gelatin methacrylate hydrogel with efficient growth factor release and 3D spatial structure for accelerated wound healing Macromol. Biosci. 23 2200500
[137] Peppas N A and Langer R 1994 New challenges in biomaterials Science 263 1715-20
[138] Lee K Y and Mooney D J 2001 Hydrogels for tissue engineering Chem. Rev. 101 1869-79
[139] Zuo B, Dai L and Wu Z 2006 Analysis of structure and properties of biodegradable regenerated silk fibroin fibers J. Mater. Sci. 41 3357-61
[140] He X, Liu X, Yang J, Du H, Chai N, Sha Z, Geng M, Zhou X and He C 2020 Tannic acid-reinforced methacrylated chitosan/methacrylated silk fibroin hydrogels with multifunctionality for accelerating wound healing Carbohydr. Polym. 247 116689
[141] Xu L, Zhang Z, Jorgensen A M, Yang Y, Jin Q, Zhang G, Cao G, Fu Y, Zhao W and Ju J 2023 Bioprinting a skin patch with dual-crosslinked gelatin (GelMA) and silk fibroin (SilMA): An approach to accelerating cutaneous wound healing Mater. Today Bio. 18 100550
[142] Meng Z, He Y, Wang F, Hang R, Zhang X, Huang X and Yao X 2021 Enhancement of antibacterial and mechanical properties of photocurable ε-poly-l-lysine hydrogels by tannic acid treatment ACS. Appl. Bio. Mater. 4 2713-22
[143] Sun A, He X, Li L, Li T, Liu Q, Zhou X, Ji X, Li W and Qian Z 2020 An injectable photopolymerized hydrogel with antimicrobial and biocompatible properties for infected skin regeneration NPG Asia Mater. 12 25
[144] Steckbeck J D, Deslouches B and Montelaro R C 2014 Antimicrobial peptides: new drugs for bad bugs? Expert opin. Biol. Ther. 14 11-4
[145] Sullivan G J, Delgado N N, Maharjan R and Cain A K 2020 How antibiotics work together: Molecular mechanisms behind combination therapy Curr. Opin. Microbiol. 57 31-40
[146] Hipolito R B, Mallorca F G, Zuniga-Macaraig Z O, Apolinario P C and Wheeler-Sherman J 2001 Head lice infestation: single drug versus combination therapy with one percent permethrin and trimethoprim/sulfamethoxazole Pediatrics 107 e30
[147] Davis B D 1982 Bactericidal synergism between β-lactams and aminoglycosides: mechanism and possible therapeutic implications Rev. Infec. Dis. 4 237-45
[148] Liu Y, Li R, Xiao X and Wang Z 2019 Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bacteria Crit. Rev. Microbiol. 45 301-14
[149] Douafer H, Andrieu V, Phanstiel IV O and Brunel J M 2019 Antibiotic adjuvants: make antibiotics great again! J. Med. Chem. 62 8665-81
[150] Yap J K Y, Tan S Y Y, Tang S Q, Thien V K and Chan E W L 2021 Synergistic antibacterial activity between 1, 4-naphthoquinone and β-lactam antibiotics against methicillin-resistant Staphylococcus aureus Microb. Drug Resist. 27 234-40
[151] Bush K and Macielag M J 2010 New β-lactam antibiotics and β-lactamase inhibitors Expert Opin. Ther. Pat. 20 1277-93
[152] Liu Y, Tong Z, Shi J, Li R, Upton M and Wang Z 2021 Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria Theranostics 11 4910
[153] Laudy A E, Mrowka A, Krajewska J and Tyski S 2016 The influence of efflux pump inhibitors on the activity of non-antibiotic NSAIDS against gram-negative rods PLoS One 11 e0147131
[154] Magana M, Pushpanathan M, Santos A L, Leanse L, Fernandez M, Ioannidis A, Giulianotti M A, Apidianakis Y, Bradfute S and Ferguson A L 2020 The value of antimicrobial peptides in the age of resistance Lancet. Infec. Dis. 20 e216-30
[155] Cote C K, Blanco I I, Hunter M, Shoe J L, Klimko C P, Panchal R G and Welkos S L 2020 Combinations of early generation antibiotics and antimicrobial peptides are effective against a broad spectrum of bacterial biothreat agents Microb. pathog. 142 104050
[156] Findlay F, Proudfoot L, Stevens C and Barlow P G 2016 Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections Pathog. Glob. Health 110 137-47
[157] Mahlapuu M, Håkansson J, Ringstad L and Björn C 2016 Antimicrobial peptides: an emerging category of therapeutic agents Front. Cell. Infect.Microbiol. 6 194
[158] Bahar A A and Ren D 2013 Antimicrobial peptides Pharmaceuticals 6 1543-75
[159] Tang S-S, Prodhan Z H, Biswas S K, Le C-F and Sekaran S D 2018 Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification Phytochemistry 154 94-105
[160] Vizioli J and Salzet M 2002 Antimicrobial peptides from animals: focus on invertebrates Trends. Pharmacol. Sci. 23 494-6
[161] Turaga V R 2020 Bioactive Natural Products in Drug Discovery (Springer) 713-30
[162] Hassan M, Kjos M, Nes I, Diep D and Lotfipour F 2012 Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance J. Appl. Microbiol. 113 723-36
[163] Bradshaw J P 2003 Cationic antimicrobial peptides BioDrugs 17 233-40
[164] Jenssen H, Hamill P and Hancock R E 2006 Peptide antimicrobial agents Clin. Microbiol. Rev. 19 491-511
[165] Hale J D and Hancock R E 2007 Alternative mechanisms of action of cationic antimicrobial peptides on bacteria Expert Rev. Anti. Infect. Ther. 5 951-9
[166] Brogden K A 2005 Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. rev. Microbiol. 3 238-50
[167] Geitani R, Moubareck C A, Touqui L and Sarkis D K 2019 Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa BMC Microbiol. 19 1-12
[168] Grassi L, Maisetta G, Esin S and Batoni G 2017 Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms Front. Microbiol. 8 2409
[169] Iwasaki T, Saido-Sakanaka H, Asaoka A, Taylor D, Ishibashi J and Yamakawa M 2007 In vitro activity of diastereomeric antimicrobial peptides alone and in combination with antibiotics against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa J. Insect Biotechnol. Sericology 76 25-29
[170] Pizzolato-Cezar L R, Okuda-Shinagawa N M and Machini M T 2019 Combinatory therapy antimicrobial peptide-antibiotic to minimize the ongoing rise of resistance Front. Microbiol. 10 1703
[171] Field D, O’Connor R, Cotter P D, Ross R P and Hill C 2016 In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms Front. Microbiol. 7 508
[172] Berditsch M, Jäger T, Strempel N, Schwartz T, Overhage J and Ulrich A S 2015 Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa Antimicrob. Agents Chemother. 59 5288-96
[173] Shukla S C, Singh A, Pandey A K and Mishra A 2012 Review on production and medical applications of ɛ-polylysine Biochem. Eng. J. 65 70-81
[174] Ning H-Q, Lin H and Wang J X 2021 Synergistic effects of endolysin Lysqdvp001 and ε-poly-lysine in controlling Vibrio parahaemolyticus and its biofilms Int. J. Food Microbiol. 343 109112
[175] Feldman M, Sionov R, Smoum R, Mechoulam R, Ginsburg I and Steinberg D 2020 Comparative evaluation of combinatory interaction between endocannabinoid system compounds and Poly-L-lysine against Streptococcus mutans growth and biofilm formation Biomed. Res. Int. 2020 7258380
[176] Najjar M B, Kashtanov D and Chikindas M 2007 ε‐Poly‐l‐lysine and nisin A act synergistically against Gram‐positive food‐borne pathogens Bacillus cereus and Listeria monocytogenes Lett. Appl. Microbiol. 45 13-8
[177] Bacalum M and Radu M 2015 Cationic antimicrobial peptides cytotoxicity on mammalian cells: an analysis using therapeutic index integrative concept Int. J. Pept. Res. 21 47-55
[178] Dijksteel G S, Ulrich M M, Middelkoop E and Boekema B K 2021 Lessons learned from clinical trials using antimicrobial peptides (AMPs) Front. Microbiol. 12 616979
[179] Nation R L, Rigatto M H P, Falci D R and Zavascki A P 2019 Polymyxin acute kidney injury: dosing and other strategies to reduce toxicity Antibiotics 8 24
[180] Cai L, Cao A, Bai F and Li J 2015 Effect of ε-polylysine in combination with alginate coating treatment on physicochemical and microbial characteristics of Japanese sea bass (Lateolabrax japonicas) during refrigerated storage LWT-Food Sci. Technol. 62 1053-9
[181] Moschonas G, Geornaras I, Stopforth J D, Wach D, Woerner D R, Belk K E, Smith G C and Sofos J N 2012 Activity of caprylic acid, carvacrol, ɛ‐polylysine and their combinations against Salmonella in not‐ready‐to‐eat surface‐browned, frozen, breaded chicken products J. Food Sci. 77 M405-M11
[182] Zahi M R, El Hattab M, Liang H and Yuan Q 2017 Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine Food Chem. 221 18-23
[183] Koebnik R, Locher K P and Van Gelder P 2000 Structure and function of bacterial outer membrane proteins: barrels in a nutshell Mol. Microbiol. 37 239-53
[184] Abushaheen M A, Fatani A J, Alosaimi M, Mansy W, George M, Acharya S, Rathod S, Divakar D D, Jhugroo C and Vellappally S 2020 Antimicrobial resistance, mechanisms and its clinical significance Dis. Mon. 66 100971
[185] Andersson D I, Balaban N Q, Baquero F, Courvalin P, Glaser P, Gophna U, Kishony R, Molin S and Tønjum T 2020 Antibiotic resistance: turning evolutionary principles into clinical reality FEMS Microbiol. Rev. 44 171-88
[186] Alanis A J 2005 Resistance to antibiotics: are we in the post-antibiotic era? Arch. med. Res. 36 697-705
[187] Cavera V L, Volski A and Chikindas M L 2015 The natural antimicrobial subtilosin A synergizes with lauramide arginine ethyl ester (LAE), ε-poly-l-lysine (polylysine), clindamycin phosphate and metronidazole, against the vaginal pathogen Gardnerella vaginalis Probiotics antimicrob. proteins 7 164-71
[188] Chang Y, McLandsborough L and McClements D J 2012 Cationic antimicrobial (ε-polylysine)–anionic polysaccharide (pectin) interactions: influence of polymer charge on physical stability and antimicrobial efficacy J. Agric. Food Chem. 60 1837-44
[189] Hu Y, Liu A, Vaudrey J, Vaiciunaite B, Moigboi C, McTavish S M, Kearns A and Coates A 2015 Combinations of β-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus PLoS One 10 e0117664
[190] Zheng Z, Tharmalingam N, Liu Q, Jayamani E, Kim W, Fuchs B B, Zhang R, Vilcinskas A and Mylonakis E 2017 Synergistic efficacy of Aedes aegypti antimicrobial peptide cecropin A2 and tetracycline against Pseudomonas aeruginosa Antimicrob. agents Chemother. 61 e00686-17
[191] Standards N C f C L and Barry A L 1999 Methods for determining bactericidal activity of antimicrobial agents: approved guideline vol 19 (National Committee for Clinical Laboratory Standards, Pennsylvania)
[192] Wolfmeier H, Pletzer D, Mansour S C and Hancock R E 2018 New perspectives in biofilm eradication ACS Infect. Dis. 4 93-106
[193] Maurice N M, Bedi B and Sadikot R T 2018 Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections Am. J. of Respir. Cell mol. biol. 58 428-39
[194] Hall-Stoodley L, Costerton J W and Stoodley P 2004 Bacterial biofilms: from the natural environment to infectious diseases Nat. rev. microbiol. 2 95-108
[195] Gibbons R J 1989 Bacterial adhesion to oral tissues: a model for infectious diseases J. Dent. res. 68 750-60
[196] Palmer J, Flint S and Brooks J 2007 Bacterial cell attachment, the beginning of a biofilm J. Ind. Microbiol. Biotechnol. 34 577-88
[197] Davison W M, Pitts B and Stewart P S 2010 Spatial and temporal patterns of biocide action against Staphylococcus epidermidis biofilms Antimicrob. Agents Chemother. 54 2920-7
[198] Shi D, Mi G, Wang M and Webster T J 2019 In vitro and ex vivo systems at the forefront of infection modeling and drug discovery Biomaterials 198 228-49
[199] Wang R, Xu D-l, Liang L, Xu T-t, Liu W, Ouyang P-k, Chi B and Xu H 2016 Enzymatically crosslinked epsilon-poly-L-lysine hydrogels with inherent antibacterial properties for wound infection prevention Rsc. Advances 6 8620-7
[200] Guo Z, Sui J, Ma M, Hu J, Sun Y, Yang L, Fan Y and Zhang X 2020 pH-Responsive charge switchable PEGylated ε-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment J. Control. Release 326 350-64
[201] Garty B Z, Offer I, Livni E and Danon Y L 1994 Erythema multiforme and hypersensivity myocarditis caused by ampicillin Ann. Pharmacother. 28 730-1
[202] Guin J and Phillips D 1989 Erythroderma from systemic contact dermatitis: a complication of systemic gentamicin in a patient with contact allergy to neomycin Cutis 43 564-7
[203] Bjellerup M and Ljunggren B 1985 Photohemolytic potency of tetracyclines J. invest. dermol. 84 262-4
[204] Yow M D, Taber L H, Barrett F F, Mintz A A, Blankinship G R, Clark G E and Clark D J 1976 A ten-year assessment of methicillin-associated side effects Pediatrics 58 329-34
[205] Spicer C D 2020 Hydrogel scaffolds for tissue engineering: The importance of polymer choice Polym. Chem. 11 184-219
[206] Chao P-H G, Yodmuang S, Wang X, Sun L, Kaplan D L and Vunjak-Novakovic G 2010 Silk hydrogel for cartilage tissue engineering J. Biomed. Mater. Res. B. Appl Biomater. 95B 84-90
[207] Zhang Z, Qu Y, Li X, Zhang S, Wei Q, Shi Y and Chen L 2014 Electrophoretic deposition of tetracycline modified silk fibroin coatings for functionalization of titanium surfaces Appl. Surf. Sci. 303 255-62
[208] Avani F, Damoogh S, Mottaghitalab F, Karkhaneh A and Farokhi M 2020 Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering Int. J. Polym. Mater. 69 32-43
[209] Barroso I A, Man K, Hall T J, Robinson T E, Louth S E, Cox S C and Ghag A K 2022 Photocurable antimicrobial silk‐based hydrogels for corneal repair J. Biomed. Mater. Res. A 110 1401-15
[210] Raho R, Nguyen N-Y, Zhang N, Jiang W, Sannino A, Liu H, Pollini M and Paladini F 2020 Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications Mater. Sci. Eng. C. Mater. Biol Appl. 107 110219
[211] Ribeiro M, Ferraz M P, Monteiro F J, Fernandes M H, Beppu M M, Mantione D and Sardon H 2017 Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration Nanomedicine 13 231-9
[212] Dong M, Mao Y, Zhao Z, Zhang J, Zhu L, Chen L and Cao L 2022 Novel fabrication of antibiotic containing multifunctional silk fibroin injectable hydrogel dressing to enhance bactericidal action and wound healing efficiency on burn wound: In vitro and in vivo evaluations Int. Wound. J. 19 679-91
[213] Eivazzadeh-Keihan R, Zare-Bakheir E, Aliabadi H A M, Gorab M G, Ghafuri H, Maleki A, Madanchi H and Mahdavi M 2022 A novel, bioactive and antibacterial scaffold based on functionalized graphene oxide with lignin, silk fibroin and ZnO nanoparticles Sci. Rep. 12 8770
[214] Xu Z, Chen T, Zhang K Q, Meng K and Zhao H 2021 Silk fibroin/chitosan hydrogel with antibacterial, hemostatic and sustained drug‐release activities J. Mater. Chem. 70 1741-51
[215] Jing J, Liang S, Yan Y, Tian X and Li X 2019 Fabrication of hybrid hydrogels from silk fibroin and tannic acid with enhanced gelation and antibacterial activities ACS Biomater. Sci. Eng. 5 4601-11
[216] Yin C, Han X, Lu Q, Qi X, Guo C and Wu X 2022 Rhein incorporated silk fibroin hydrogels with antibacterial and anti-inflammatory efficacy to promote healing of bacteria-infected burn wounds Int. J. Biol. Macromol. 201 14-9
[217] Potekaev N N, Borzykh O B, Medvedev G V, Pushkin D V, Petrova M M, Petrov A V, Dmitrenko D V, Karpova E I, Demina O M and Shnayder N A 2021 The role of extracellular matrix in skin wound healing J. Clin. Med. 10 5947
[218] Sun W, Taylor C S, Zhang Y, Gregory D A, Tomeh M A, Haycock J W, Smith P J, Wang F, Xia Q and Zhao X 2021 Cell guidance on peptide micropatterned silk fibroin scaffolds J. Colloid Interface Sci. 603 380-90
[219] Leal-Egana A and Scheibel T 2012 Interactions of cells with silk surfaces J. Mater. Chem. 22 14330-6
[220] McGill M, Grant J M and Kaplan D L 2020 Enzyme-mediated conjugation of peptides to silk fibroin for facile hydrogel functionalization Ann. Biomed. Eng. 48 1905-15
[221] Yanagisawa S, Zhu Z, Kobayashi I, Uchino K, Tamada Y, Tamura T and Asakura T 2007 Improving cell-adhesive properties of recombinant Bombyx mori silk by incorporation of collagen or fibronectin derived peptides produced by transgenic silkworms Biomacromolecules 8 3487-92
[222] Costa F, Carvalho I F, Montelaro R C, Gomes P and Martins M C L 2011 Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces Acta Biomater. 7 1431-40
[223] You X, Einson J E, Lopez-Pena C L, Song M, Xiao H, McClements D J and Sela D A 2017 Food-grade cationic antimicrobial ε-polylysine transiently alters the gut microbial community and predicted metagenome function in CD-1 mice NPJ. Sci. Food 1 8
[224] Zou Y-J, He S-S and Du J-Z 2018 ε-Poly (L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities Chin. J. polym. Sci. 36 1239-50
[225] Hyon S H, Nakajima N, Sugai H and Matsumura K 2014 Low cytotoxic tissue adhesive based on oxidized dextran and epsilon‐poly‐l‐lysine J. Biomed. Mater. Res. A 102 2511-20
[226] Nike D U, Katas H, Mohd N F, Hiraoka Y, Tabata Y, Idrus R B H and Fauzi M B 2021 Characterisation of rapid in situ forming gelipin hydrogel for future use in irregular deep cutaneous wound healing Polymers 13 3152
[227] Yuan Y, Shen S and Fan D 2021 A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion Biomaterials 276 120838
[228] Li J, Yu F, Chen G, Liu J, Li X-L, Cheng B, Mo X-M, Chen C and Pan J-F 2020 Moist-retaining, self-recoverable, bioadhesive, and transparent in situ forming hydrogels to accelerate wound healing ACS Appl. Mater. Interfaces. 12 2023-38
[229] Zheng H and Zuo B 2021 Functional silk fibroin hydrogels: Preparation, properties and applications Journal of Materials Chemistry B 9 1238-58
[230] Hong H, Seo Y B, Kim D Y, Lee J S, Lee Y J, Lee H, Ajiteru O, Sultan M T, Lee O J, Kim S H and Park C H 2020 Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering Biomaterials 232 119679
[231] Fang H, Wei J and Yu Y 2004 In vivo studies of endotoxin removal by lysine–cellulose adsorbents Biomaterials 25 5433-40
[232] Gong X, Luo M, Wang M, Niu W, Wang Y and Lei B 2022 Injectable self-healing ceria-based nanocomposite hydrogel with ROS-scavenging activity for skin wound repair Regen. Biomater. 9 rbab074
[233] Lin M-J, Lu M-C, Chan Y-C, Huang Y-F and Chang H-Y 2021 An insulin-like growth factor-1 conjugated bombyx mori silk fibroin film for diabetic wound healing: fabrication, physicochemical property characterization, and dosage optimization in vitro and in vivo Pharmaceutics. 13 1459
[234] Nguyen A K, Goering P L, Elespuru R K, Sarkar Das S and Narayan R J 2020 The photoinitiator Lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate with exposure to 405 nm light Is cytotoxic to mammalian cells but not mutagenic in bacterial reverse mutation assays Polymers. 12
[235] Xu H, Casillas J, Krishnamoorthy S and Xu C 2020 Effects of Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs Biomed. Mater. 15 055021
[236] Zhang Y-Q 2002 Applications of natural silk protein sericin in biomaterials Biotechnol. Adv. 20 91-100
[237] Choudhury M and Devi D 2016 Impact of high temperature and pressure on sericin scouring of muga silk cocoons Indian J. Fibre Textile Res. 41 93-6
[238] Nanda S 2012 optimization of sericin removal from tusser silk by autoclaving. (National Institute of Technology, Rourkela)
[239] Sah D M and Pramanik K 2010 Regenerated silk fibroin from B. mori silk cocoon for tissue engineering applications Int. J. Environ. Sci. Dev. 1 404-8
[240] Onder O, Batool R and Nazeer M A 2022 Self-assembled silk fibroin hydrogels: From preparation to biomedical applications Mater. Adv. 3 6920–49
[241] Matsumoto K, Uejima H, Sano Y and Sumino H 1997 Regenerated protein fibers. II. Viscoelastic behavior of silk fibroin solutions J. Polym. Sci. Pol. Chem. 35 1955-9
[242] Cheng G, Wang X, Song C and Zhang X 2022 Directly self-assembling method to easily prepare rough silk fibroin film Soft Mater. 20 251-8
[243] Sinna J, Numpaisal P-o, Ruksakulpiwat C and Ruksakulpiwat Y 2021 Extraction of silk fibroin and glycidyl methacrylate grafting on silk fibroin optimization of SF-g-GMA for meniscus tissue engineering Mater. Today: Proc. 47 3476-9
[244] Sundaran S, Kok L-C and Chang H-Y 2022 Combination effect of epsilon-poly-L-lysine and antibiotics against common bacterial pathogens J. Antibiot. 75 354-9
[245] Li Q, Yu S, Han J, Wu J, You L, Shi X and Wang S 2022 Synergistic antibacterial activity and mechanism of action of nisin/carvacrol combination against Staphylococcus aureus and their application in the infecting pasteurized milk Food Chem. 380 132009
[246] Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z and Wang J 2018 A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing RSC Adv. 8 7533-49
[247] Liang Y, He J and Guo B 2021 Functional hydrogels as wound dressing to enhance wound healing ACS Nano 15 12687-722
[248] Zhou S, Wang Q, Huang A, Fan H, Yan S and Zhang Q 2021 Advances in skin wound and scar repair by polymer scaffolds Molecules 26 6110
[249] Koyano T, Minoura N, Nagura M and Kobayashi K i 1998 Attachment and growth of cultured fibroblast cells on PVA/chitosan‐blended hydrogels J. Biomed. Mater. Res. 39 486-90
[250] Haugh M G, Murphy C M, McKiernan R C, Altenbuchner C and O'Brien F J 2011 Crosslinking and mechanical properties significantly influence cell attachment, proliferation, and migration within collagen glycosaminoglycan scaffolds Tissue. Eng. Part. A 17 1201-8
[251] Cai S, Wu C, Yang W, Liang W, Yu H and Liu L 2020 Recent advance in surface modification for regulating cell adhesion and behaviors Nanotechnol. Rev. 9 971-89
[252] Lee G, Ko Y-G, Bae K H, Kurisawa M, Kwon O K and Kwon O H 2022 Green tea catechin-grafted silk fibroin hydrogels with reactive oxygen species scavenging activity for wound healing applications Biomater. Res. 26 62
[253] O'toole E A, Goel M and Woodley D T 1996 Hydrogen peroxide inhibits human keratinocyte migration Dermatol. Surg. 22 525-9
[254] Liu Q, Liu Y, He H, Wang F, Yao D, He F, Liu H and Fan Y 2018 Silk fibroin scavenges hydroxyl radicals produced from a long-term stored water-soluble fullerene system J. Mater. Chem. B 6 769-80
[255] Amiri A, Memarpoor‐Yazdi M, Shanbedi M and Eshghi H 2013 Influence of different amino acid groups on the free radical scavenging capability of multi walled carbon nanotubes J. Biomed. Mater. Res. A 101 2219-28
[256] Yang R, Xue W, Liao H, Wu F, Guo H, Zhang W, Wang P, Tan X, Xu H and Chi B 2022 Injectable polylysine and dextran hydrogels with robust antibacterial and ROS-scavenging activity for wound healing Int. J. Biol. Macromol. 223 950-60
[257] Liu S, Zhao Y, Wei H, Nie L, Ding P, Sun H, Guo Y, Chen T, Okoro O V, Shavandi A and Fan L 2022 Injectable hydrogels based on silk fibroin peptide grafted hydroxypropyl chitosan and oxidized microcrystalline cellulose for scarless wound healing Colloids Surf. A: Physicochem. Eng. 647 129062
[258] Liu X, Xu T, Jiang C, Li Y, Su B, Zhao W and Zhao C 2022 Ultraporous polyquaternium-carboxylated chitosan composite hydrogel spheres with anticoagulant, antibacterial, and rapid endotoxin removal profiles for sepsis treatment Biomacromolecules 23 3728-42
[259] Hirayama C, Sakata M, Nakamura M, Ihara H, Kunitake M and Todokoro M 1999 Preparation of poly (ε-lysine) adsorbents and application to selective removal of lipopolysaccharides J. Chromatogr. B Biomed. Sci. Appl. 721 187-95
[260] Griffin D R, Archang M M, Kuan C-H, Weaver W M, Weinstein J S, Feng A C, Ruccia A, Sideris E, Ragkousis V, Koh J, Plikus M V, Di Carlo D, Segura T and Scumpia P O 2021 Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing Nat. Mater. 20 560-9
[261] Li M, Ogiso M and Minoura N 2003 Enzymatic degradation behavior of porous silk fibroin sheets Biomaterials 24 357-65
[262] Yang X, Wang B, Sha D, Liu Y, Xu J, Shi K, Yu C and Ji X 2021 Injectable and antibacterial ε-poly(l-lysine)-modified poly(vinyl alcohol)/chitosan/AgNPs hydrogels as wound healing dressings Polymer 212 123155
[263] Patterson J, Siew R, Herring S, Lin A, Guldberg R and Stayton P 2010 Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration Biomaterials 31 6772-81
[264] Tottoli E M, Dorati R, Genta I, Chiesa E, Pisani S and Conti B 2020 Skin wound healing process and new emerging technologies for skin wound care and regeneration Pharmaceutics 12 735
[265] Liu J, Qu M, Wang C, Xue Y, Huang H, Chen Q, Sun W, Zhou X, Xu G and Jiang X 2022 A dual‐cross‐linked hydrogel patch for promoting diabetic wound healing Small 18 2106172
[266] Li Z and Bratlie K M 2021 The influence of polysaccharides‐based material on macrophage phenotypes Macromol. Biosci. 21 2100031
[267] Kim S W, Bae Y H and Okano T 1992 Hydrogels: swelling, drug loading, and release Pharm. Res. 9 283-90
[268] Choi K Y, Ajiteru O, Hong H, Suh Y J, Sultan M T, Lee H, Lee J S, Lee Y J, Lee O J, Kim S H and Park C H 2023 A digital light processing 3D-printed artificial skin model and full-thickness wound models using silk fibroin bioink Acta Biomater. 164 159-74
[269] Yan C and Pochan D J 2010 Rheological properties of peptide-based hydrogels for biomedical and other applications Chem. Soc. Rev. 39 3528-40
[270] Demirci G, Niedźwiedź M J, Kantor-Malujdy N and El Fray M 2022 Elastomer-hydrogel systems: from bio-inspired interfaces to medical applications Polymers 14
[271] Kamoun E A, Kenawy E S and Chen X 2017 A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings J. Adv. Res. 8 217-33
[272] Zhu J and Marchant R E 2011 Design properties of hydrogel tissue-engineering scaffolds Expert Rev. Med. Devices. 8 607-26
[273] Lee J, Song B, Subbiah R, Chung J J, Choi U H, Park K, Kim S-H and Oh S J 2019 Effect of chain flexibility on cell adhesion: Semi-flexible model-based analysis of cell adhesion to hydrogels Sci. Rep. 9 2463
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用新式三維細胞培養系統研究癌症與組織工程中異種細胞間交互作用
2. 治療性anti-IgE單株抗體藥物在體外重組模式及體內基因轉殖鼠之藥理作用機制
3. 建構並鑑定創傷弧菌調控子LytR的突變株
4. 創傷弧菌YJ016中調控環狀雙鳥嘌呤單磷酸相關的 vva0325-36基因群功能分析
5. DTriP-22抑制腸病毒71型之機制探討
6. 細菌基因表現之調控: HptB磷酸根轉移系統與三磷酸腺苷水解功能必須之轉錄蛋白AcoK之功能分析
7. 比較分析綠膿桿菌兩個尿嘧啶雙磷酸葡萄糖去氫酶
8. 標的表現IgE的B淋巴細胞以調控IgE之生成
9. 克雷白氏肺炎桿菌第三型線毛主要單體蛋白MrkA—線毛組裝有關區域之搜尋以及於呈現系統發展之應用
10. 綠膿桿菌HptB訊息傳遞路徑-雜合感應子之分析及下游基因之搜尋
11. 克雷白氏肺炎桿菌磷酸酪胺酸激酶KpWzc對其下游酵素ManC, Gnd活性影響之分析與Ugd磷酸酪胺酸殘基鑑定與下游受質之搜尋
12. 克雷白氏肺炎桿菌第三型線毛主要單元體MrkA─參與線毛堆疊之重要胺基酸分析以及線毛的疫苗呈現系統之建構
13. Histidine-containing Phosphotransfer Protein-B (HptB) Regulates Swarming Motility through Partner-switching System in Pseudomonas aeruginosa PAO1 strain
14. 利用磁性粒子與光敏性水膠建構特殊細胞排列的組織
15. 創傷弧菌外毒素RtxA 高量甘氨酸-天門冬氨酸區域人源單鏈抗體之篩選以及此區域的細胞表面結合特性之研究
 
* *