帳號:guest(3.141.32.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘富德
作者(外文):Phan, Phu Duc
論文名稱(中文):肝素與醣基對於蛇毒金屬蛋白酶的活性影響研究
論文名稱(外文):N-glycan- and Heparin- mediated Snake Venom Metalloprotease interaction with fibrinogen
指導教授(中文):吳文桂
指導教授(外文):Wu, Wen-Guey
口試委員(中文):簡昆鎰
李紹禎
口試委員(外文):Chien, Kun-Yi
LEE, SHAO-CHEN
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:105080706
出版年(民國):109
畢業學年度:107
語文別:英文
論文頁數:50
中文關鍵詞:肝素與醣
外文關鍵詞:N-glycan- and Heparin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中文摘要
N-glycosylation在真核細胞的幾個生理過程中起重要作用。在許多情況下,N-Glycan可以通過防止蛋白水解來延長蛋白質的穩定性和半衰期,因此,了解聚醣對蛋白質結構的作用是非常重要的。在蛇毒的結構中也含有 N-glycan,然而他的功能仍然不清楚。
在這項研究中,我們鑑定了來自Naja atra的Atragin和K-like兩種SVMP對其反應物纖維蛋白原(Fg)和N-Glycan作用的酶活性。結果顯示K-like和Atragin在選擇Fg上的差異切割位點的明顯證據。對於K-like,當與其他SVMP比較時,它在Lys413↓Leu414位置具有相同的切割位點。相比之下,Atragin切割了兩個不同的α-chain位置,並在用Fg處理Atragin後立即發生反應。有趣的是,添加N-聚醣可以影響兩種SVMP的酶活性:末端的唾液酸不僅保證穩定,而且還抑制K-like酶活性。而肝素促進Fgβ-chain 的Atragin酶活性。基於該結果,我們提出了針對Fg的K-like和Atragin的示意模型,以解釋末端N-glycan和heparin影響SVMP酶活性的作用。

ABSTRACT
N-linked glycosylation plays an essential role in several physiological processes of eukaryotic cell. N-glycan can prolong the stability and half-life time of protein in many cases by protection against proteolysis, therefore, the understanding about the role of glycan on protein structure is very important. In the structure of snake venom also contain N-glycosylation, however, the function of it still remaining unclearly understood.
In this study, we identified the enzymatic activity of two SVMPs from Naja atra, Atragin and K-like, on its substrate Fibrinogen (Fg) and the role of N-glycan. The results shown clearly evidence that K-like and Atragin chosen the differential cleavage site on Fg. For K-like, it has the same cleavage site at position Lys413↓Leu414 when compare with others SVMP. In contrast, Atragin cleaved two different position of α-chain, that’s reaction occurred immediately after treat Atragin with Fg. Interestingly, the addition of N-glycan can mediate enzymatic activity of the two SVMP: The Terminal Sialic Acid not only warrant the stable but also prevent enzymatic of K-like, whereas Heparin promoted Atragin enzymatic activity on β-chain of Fg. Based on the results, we propose the schematic model for K-like and Atragin against Fg to explain the role of Terminal Sialic Acid and Heparin to mediate enzymatic activity of SVMP.
LIST OF CONTENT
I. INTRODUCTION 1
1.1 Venoms and toxins 1
1.2 Venom protease 2
1.2.1 ADAMs family 4
1.2.2 Snake venom metalloproteinase (SVMP) 5
1.2.2.1 P-I snake venom metalloproteinase 6
1.2.2.2 P-II snake venom metalloproteinase 6
1.2.2.3 P-III snake venom metalloproteinase 7
1.3 Effects of Glycosylation on Protease 8
1.3.1 N-glycosylated of ADAM and SVMPs 9
1.3.2 Glycosylation effect on protein stability 9
1.4 Heparin 10
1.5 Fibrinogen 10
II. MATERIALS AND METHODS 20
2.1 Materials 20
2.2 Methods 20
2.2.1 Purification of Atragin and Kaouthiagin-like 20
2.2.2 Measurement SVMP’s proteolytic activity 21
2.2.3 Transfer from gel to membrane for N-terminals analysis (wet transfer). 22
2.2.4 Isothermal titration calorimetry measurements 22
2.2.5 Fluorescence Measurement 23
2.2.6 N-terminal sequence analysis 23
III. RESULTS 24
3.1 Terminal Sialic acid of N-glycan inhibit K-like SVMP activities 24
3.2 Heparin binding and enhancing Atragin SVMP functions 25
3.3 Identified the cleavage sites of fibrinogen by K-like and Atragin 25
3.4 Modification structure of SVMP with N-glycan. 25
IV. DISCUSSIONS 36
References 44
Appendix table 54



Anders, A., Gilbert, S., Garten, W., Postina, R., and Fahrenholz, F. (2001). Regulation of the alpha-secretase ADAM10 by its prodomain and proprotein convertases. Faseb J 15, 1837-+.
Barraviera, B. (2007). The journal of venomous animals and toxins including tropical diseases - (JVATiTD) from 1995 to 2007. J Venom Anim Toxins 13, 428-429.
Boden, M.K., and Flock, J.I. (1989). Fibrinogen-binding protein/clumping factor from Staphylococcus aureus. Infect Immun 57, 2358-2363.
Brown, R.A., Leung, E., Kankaanranta, H., Moilanen, E., and Page, C.P. (2012). Effects of heparin and related drugs on neutrophil function. Pulm Pharmacol Ther 25, 185-192.
Cesar, P.H.S., Braga, M.A., Trento, M.V.C., Menaldo, D.L., and Marcussi, S. (2019). Snake Venom Disintegrins: An Overview of their Interaction with Integrins. Curr Drug Targets 20, 465-477.
Cidade, D.A.P., Simao, T.A., Davila, A.M.R., Wagner, G., Junqueira-De-Azevedo, I.D.M., Ho, P.L., Bon, C., Zingali, R.B., and Albano, R.M. (2006). Bothrops jararaca venom gland transcriptome: Analysis of the gene expression pattern. Toxicon 48, 437-461.
De Luca, M., Dunlop, L.C., Andrews, R.K., Flannery, J.V., Jr., Ettling, R., Cumming, D.A., Veldman, G.M., and Berndt, M.C. (1995). A novel cobra venom metalloproteinase, mocarhagin, cleaves a 10-amino acid peptide from the mature N terminus of P-selectin glycoprotein ligand receptor, PSGL-1, and abolishes P-selectin binding. J Biol Chem 270, 26734-26737.
Doolittle, R.F., and Kollman, J.M. (2006). Natively unfolded regions of the vertebrate fibrinogen molecule. Proteins 63, 391-397.
Fox, J.W., and Serrano, S.M.T. (2005). Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 45, 969-985.
Fredenburgh, J.C., Leslie, B.A., Stafford, A.R., Lim, T., Chan, H.H., and Weitz, J.I. (2013). Zn2+ mediates high affinity binding of heparin to the alphaC domain of fibrinogen. J Biol Chem 288, 29394-29402.
Galliano, M.F., Huet, C., Frygelius, J., Polgren, A., Wewer, U.M., and Engvall, E. (2000). Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, alpha -actinin-2, is required for myoblast fusion. J Biol Chem 275, 13933-13939.
Gangadharan, S., Ghidelli, S., and Kamakaka, R.T. (2004). Purification of Sir2 proteins from yeast. Method Enzymol 377, 234-254.
Grimsey, N.J., Coronel, L.J., Cordova, I.C., and Trejo, J. (2016). Recycling and Endosomal Sorting of Protease-activated Receptor-1 Is Distinctly Regulated by Rab11A and Rab11B Proteins. Journal of Biological Chemistry 291, 2223-2236.
Guan, H.H., Goh, K.S., Davamani, F., Wu, P.L., Huang, Y.W., Jeyakanthan, J., Wu, W.G., and Chen, C.J. (2010). Structures of two elapid snake venom metalloproteases with distinct activities highlight the disulfide patterns in the D domain of ADAMalysin family proteins. J Struct Biol 169, 294-303.
Holford, M., Daly, M., King, G.F., and Norton, R.S. (2018). Venoms to the rescue. Science 361, 842-844.
Huang, H.W., Liu, B.S., Chien, K.Y., Chiang, L.C., Huang, S.Y., Sung, W.C., and Wu, W.G. (2015). Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics 128, 92-104.
Kattula, S., Byrnes, J.R., and Wolberg, A.S. (2017). Fibrinogen and Fibrin in Hemostasis and Thrombosis. Arterioscl Throm Vas 37, E13-E21.
Klein, T., and Bischoff, R. (2011). Active metalloproteases of the A Disintegrin and Metalloprotease (ADAM) family: biological function and structure. J Proteome Res 10, 17-33.
Koller, G., Schlomann, U., Golfi, P., Ferdous, T., Naus, S., and Bartsch, J.W. (2009). ADAM8/MS2/CD156, an emerging drug target in the treatment of inflammatory and invasive pathologies. Curr Pharm Des 15, 2272-2281.
Koo, B.H., Longpre, J.M., Somerville, R.P.T., Alexander, J.P., Leduc, R., and Apte, S.S. (2007). Regulation of ADAMTS9 secretion and enzymatic activity by its propeptide. Journal of Biological Chemistry 282, 16146-16154.
Lee, E.H., Park, J.E., Park, J.W., and Lee, J.S. (2014). Purification and biochemical characterization of a fibrin(ogen)olytic metalloprotease from Macrovipera mauritanica snake venom which induces vascular permeability. Int J Mol Med 34, 1180-1190.
Leonardi, A., Fox, J.W., Trampus-Bakija, A., and Krizaj, I. (2008). Two coagulation factor X activators from Vipera a. ammodytes venom with potential to treat patients with dysfunctional factors IXa or VIIa. Toxicon 52, 628-637.
Li, F., Li, C., Revote, J., Zhang, Y., Webb, G.I., Li, J., Song, J., and Lithgow, T. (2016). GlycoMine(struct): a new bioinformatics tool for highly accurate mapping of the human N-linked and O-linked glycoproteomes by incorporating structural features. Sci Rep 6, 34595.
Liao, X., Wang, W., Chen, S., and Wu, Q. (2007). Role of glycosylation in corin zymogen activation. Journal of Biological Chemistry 282, 27728-27735.
Lindberg, I., Apletalina, E., Liu, J., and Lamango, N. (1999). The proteolytic maturation of prohormone convertase 2 (PC2) is a pH-driven process. J Neurochem 72, S67-S67.
Lopez-Otin, C., and Bond, J.S. (2008). Proteases: Multifunctional Enzymes in Life and Disease. Journal of Biological Chemistry 283, 30433-30437.
Matsui, T., and Hamako, J. (2005). Structure and function of snake venom toxins interacting with human von Willebrand factor. Toxicon 45, 1075-1087.
Matsui, T., Sakurai, Y., Fujimura, Y., Hayashi, I., Oh-Ishi, S., Suzuki, M., Hamako, J., Yamamoto, Y., Yamazaki, J., Kinoshita, M., et al. (1998). Purification and amino acid sequence of halystase from snake venom of Agkistrodon halys blomhoffii, a serine protease that cleaves specifically fibrinogen and kininogen. Eur J Biochem 252, 569-575.
Medved, L., Weisel, J.W., Fibrinogen, Factor, X.S.o.S.S.C.o.I.S.o.T., and Haemostasis (2009). Recommendations for nomenclature on fibrinogen and fibrin. J Thromb Haemost 7, 355-359.
Mohammed, F.F., and Khokha, R. (2005). Thinking outside the cell: proteases regulate hepatocyte division. Trends Cell Biol 15, 555-563.
Mohri, H., Iwamatsu, A., and Ohkubo, T. (1994). Heparin binding sites are located in a 40-kD γ-chain and a 36-kD β-chain fragment isolated from human fibrinogen. Journal of Thrombosis and Thrombolysis 1, 49-54.
Mosesson, M.W. (2005). Fibrinogen and fibrin structure and functions. J Thromb Haemost 3, 1894-1904.
Moss, M.L., and Minond, D. (2017). Recent Advances in ADAM17 Research: A Promising Target for Cancer and Inflammation. Mediators Inflamm 2017, 9673537.
Moura-Da-Silva, A.M., Butera, D., and Tanjoni, I. (2007). Importance of snake venom metalloproteinases in cell biology: Effects on platelets, inflammatory and endothelial cells. Curr Pharm Design 13, 2893-2905.
Mullooly, M., McGowan, P.M., Crown, J., and Duffy, M.J. (2016). The ADAMs family of proteases as targets for the treatment of cancer. Cancer Biol Ther 17, 870-880.
Mulloy, B., Hogwood, J., Gray, E., Lever, R., and Page, C.P. (2016). Pharmacology of Heparin and Related Drugs. Pharmacol Rev 68, 76-141.
Nye, J.S. (1997). Developmental signaling: notch signals Kuz it's cleaved. Curr Biol 7, R716-720.
Olczyk, P., Mencner, L., and Komosinska-Vassev, K. (2015). Diverse Roles of Heparan Sulfate and Heparin in Wound Repair. Biomed Research International.
Oliveira, A.K., Leme, A.F.P., Asega, A.F., Camargo, A.C.M., Fox, J.W., and Serrano, S.M.T. (2010). New insights into the structural elements involved in the skin haemorrhage induced by snake venom metalloproteinases. Thromb Haemostasis 104, 485-497.
Ortega, N., Behonick, D., Stickens, D., and Werb, Z. (2003). How proteases regulate bone morphogenesis. Ann Ny Acad Sci 995, 109-116.
Oyama, E., and Takahashi, H. (2017). Structures and Functions of Snake Venom Metalloproteinases (SVMP) from Protobothrops venom Collected in Japan. Molecules 22.
Paine, M.J., Desmond, H.P., Theakston, R.D., and Crampton, J.M. (1992). Purification, cloning, and molecular characterization of a high molecular weight hemorrhagic metalloprotease, jararhagin, from Bothrops jararaca venom. Insights into the disintegrin gene family. J Biol Chem 267, 22869-22876.
Porter, S., Clark, I.M., Kevorkian, L., and Edwards, D.R. (2005). The ADAMTS metalloproteinases. Biochem J 386, 15-27.
Protopopova, A.D., Barinov, N.A., Zavyalova, E.G., Kopylov, A.M., Sergienko, V.I., and Klinov, D.V. (2015). Visualization of fibrinogen alphaC regions and their arrangement during fibrin network formation by high-resolution AFM. J Thromb Haemost 13, 570-579.
Ranawaka, U.K., Lalloo, D.G., and de Silva, H.J. (2013). Neurotoxicity in Snakebite-The Limits of Our Knowledge. Plos Neglect Trop D 7.
Rudchenko, S., Trakht, I., and Sobel, J.H. (1996). Comparative structural and functional features of the human fibrinogen alpha C domain and the isolated alpha C fragment - Characterization using monoclonal antibodies to defined COOH-terminal A alpha chain regions. Journal of Biological Chemistry 271, 2523-2530.
Sahin, U., Weskamp, G., Kelly, K., Zhou, H.M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P., and Blobel, C.P. (2004). Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164, 769-779.
Sajevic, T., Leonardi, A., Kovacic, L., Lang-Balija, M., Kurtovic, T., Pungercar, J., Halassy, B., Trampus-Bakija, A., and Krizaj, I. (2013a). VaH3, one of the principal hemorrhagins in Vipera ammodytes ammodytes venom, is a homodimeric P-IIIc metalloproteinase. Biochimie 95, 1158-1170.
Sajevic, T., Leonardi, A., Kovacic, L., Lang-Balija, M., Kurtovic, T., Pungercar, J., Halassy, B., Trampus-Bakija, A., and Krizaj, I. (2013b). VaH3, one of the principal hemorrhagins in Vipera ammodytes ammodytes venom, is a homodimeric P-IIIc metalloproteinase. Biochimie 95, 1158-1170.
Sanchez, E.F., Flores-Ortiz, R.J., Alvarenga, V.G., and Eble, J.A. (2017). Direct Fibrinolytic Snake Venom Metalloproteinases Affecting Hemostasis: Structural, Biochemical Features and Therapeutic Potential. Toxins 9, 392.
Sanchez, E.F., Richardson, M., Gremski, L.H., Veiga, S.S., Yarleque, A., Niland, S., Lima, A.M., Estevao-Costa, M.I., and Eble, J.A. (2016). A novel fibrinolytic metalloproteinase, barnettlysin-I from Bothrops barnetti (barnett's pitviper) snake venom with anti-platelet properties. Bba-Gen Subjects 1860, 542-556.
Seegar, T.C.M., Killingsworth, L.B., Saha, N., Meyer, P.A., Patra, D., Zimmerman, B., Janes, P.W., Rubinstein, E., Nikolov, D.B., Skiniotis, G., et al. (2017). Structural Basis for Regulated Proteolysis by the alpha-Secretase ADAM10. Cell 171, 1638-1648 e1637.
Shimokawa, K., and Takahashi, H. (1995). Comparative study of fibrinogen degradation by four arginine ester hydrolases from the venom of Agkistrodon caliginosus (Kankoku-Mamushi). Toxicon 33, 179-186.
Sola, R.J., and Griebenow, K. (2009). Effects of Glycosylation on the Stability of Protein Pharmaceuticals. J Pharm Sci-Us 98, 1223-1245.
Souza, D.H., Iemma, M.R., Ferreira, L.L., Faria, J.P., Oliva, M.L., Zingali, R.B., Niewiarowski, S., and Selistre-de-Araujo, H.S. (2000). The disintegrin-like domain of the snake venom metalloprotease alternagin inhibits alpha2beta1 integrin-mediated cell adhesion. Arch Biochem Biophys 384, 341-350.
Spraggon, G., Applegate, D., Everse, S.J., Zhang, J.-Z., Veerapandian, L., Redman, C., Doolittle, R.F., and Grieninger, G. (1998). Crystal structure of a recombinant αEC domain from human fibrinogen-420. Proceedings of the National Academy of Sciences 95, 9099-9104.
Szabo, R., and Bugge, T.H. (2008). Type II transmembrane serine proteases in development and disease. Int J Biochem Cell Biol 40, 1297-1316.
Takao, K., Takai, S., Shiota, N., Song, K.F., Nishimura, K., Ishihara, T., and Miyazaki, M. (1999). Lack of effect of carbohydrate depletion on some properties of human mast cell chymase. Bba-Gen Subjects 1427, 74-81.
Takeda, S. (2016). ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview. Toxins (Basel) 8.
Takeda, S., Igarashi, T., Mori, H., and Araki, S. (2006). Crystal structures of VAP1 reveal ADAMs' MDC domain architecture and its unique C-shaped scaffold. EMBO J 25, 2388-2396.
Tasoulis, T., and Isbister, G.K. (2017). A Review and Database of Snake Venom Proteomes. Toxins 9, 290.
Torres, F.S., Rates, B., Gomes, M.T., Salas, C.E., Pimenta, A.M., Oliveira, F., Santoro, M.M., and de Lima, M.E. (2012a). Bmoo FIBMP-I: A New Fibrinogenolytic Metalloproteinase from Bothrops moojeni Snake Venom. ISRN Toxicol 2012, 673941.
Torres, F.S., Rates, B., Gomes, M.T.R., Salas, C.E., Pimenta, A.M.C., Oliveira, F., Santoro, M.M., and de Lima, M.E. (2012b). Bmoo FIBMP-I: A New Fibrinogenolytic Metalloproteinase from Bothrops moojeni Snake Venom. ISRN Toxicology 2012, 10.
Trummal, K., Tonismagi, K., Siigur, E., Aaspollu, A., Lopp, A., Sillat, T., Saat, R., Kasak, L., Tammiste, I., Kogerman, P., et al. (2005). A novel metalloprotease from Vipera lebetina venom induces human endothelial cell apoptosis. Toxicon 46, 46-61.
Tsurupa, G., Pechik, I., Litvinov, R.I., Hantgan, R.R., Tjandra, N., Weisel, J.W., and Medved, L. (2012). On the mechanism of alphaC polymer formation in fibrin. Biochemistry 51, 2526-2538.
Van den Steen, P., Rudd, P.M., Dwek, R.A., and Opdenakker, G. (1998). Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol 33, 151-208.
Vu, T.T., Fredenburgh, J.C., and Weitz, J.I. (2013). Zinc: an important cofactor in haemostasis and thrombosis. Thromb Haemost 109, 421-430.
Ward, C.M., Vinogradov, D.V., Andrews, R.K., and Berndt, M.C. (1996). Characterization of mocarhagin, a cobra venom metalloproteinase from Naja mocambique mocambique, and related proteins from other elapidae venoms. Toxicon 34, 1203-1206.
Warrell, D.A. (2010). Snake bite. Lancet 375, 77-88.
Williams, D.J., Faiz, M.A., Abela-Ridder, B., Ainsworth, S., Bulfone, T.C., Nickerson, A.D., Habib, A.G., Junghanss, T., Fan, H.W., Turner, M., et al. (2019). Strategy for a globally coordinated response to a priority neglected tropical disease: Snakebite envenoming. PLoS Negl Trop Dis 13, e0007059.
Wong, E.T., Maretzky, T., Peleg, Y., Blobel, C.P., and Sagi, I. (2015). The Functional Maturation of A Disintegrin and Metalloproteinase (ADAM) 9, 10, and 17 Requires Processing at a Newly Identified Proprotein Convertase (PC) Cleavage Site. Journal of Biological Chemistry 290, 12135-12146.
Wu, P.L., Lin, C.C., Lin, T.H., Lee, M.S., and Wu, W.G. (2016). Distal M domain of cobra ADAM-like metalloproteinase mediates the binding of positively charged cysteine-rich domain to alphavbeta3 integrin in the suppression of cell migration. Toxicon 118, 1-12.
Zolkiewska, A. (1999). Disintegrin-like/cysteine-rich region of ADAM 12 is an active cell adhesion domain. Exp Cell Res 252, 423-431.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *