帳號:guest(3.21.248.77)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳亭均
作者(外文):Chen, Ting-Chun.
論文名稱(中文):Glutamyl-prolyl-tRNA 合成酶和其相關複合物調控內質網壓力誘發之細胞毒性
論文名稱(外文):Glutamyl-prolyl-tRNA synthetase and its related complex regulate ER stress-induced cytotoxicity
指導教授(中文):桑自剛
指導教授(外文):Sang, Tzu-Kang
口試委員(中文):張慧雲
徐瑞洲
口試委員(外文):Chang, Hui-yun
Hsu, Jui-Chou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:105080605
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:44
中文關鍵詞:內質網壓力谷氨酰 - 脯氨酰-tRNA合成酶氨酰基-tRNA合成酶相互作用的多功能蛋白質
外文關鍵詞:ER stressGlutamyl-prolyl-tRNA synthetaseAminoacyl-tRNA synthetase-interacting multifunctional proteins
相關次數:
  • 推薦推薦:0
  • 點閱點閱:18
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
內質網中產生錯誤摺疊的蛋白質時,會產生內質網壓力(ER stress)進而引發複雜的細胞內信號路徑來重建ER內部平衡。先前研究發現ER膜上的蛋白Derlin-1,過度表現會誘發細胞凋亡。我們發現glutamyl-prolyl-tRNA synthetase (EPRS) 不僅可以緩解Derlin-1所誘導的毒性,且和Derlin-1有直接的相互作用,但詳盡機制還不明瞭。因此我們利用遺傳篩選和藥物刺激來探討EPRS和ER stress之間的關聯。利用果蠅當樣本,將Derlin-1過度表現或是給予ER stress 誘導劑tunicamycin (TM),發現兩者都可讓EPRS表達上升,和上述結果相符。再者抑制內生性EPRS表達會加劇Derlin-1誘導的毒性,另外在抑制EPRS後給予TM後會縮短果蠅的壽命。相反的過度表現EPRS可以舒緩Derlin-1過度表現和TM的效果,結果顯示當細胞產生ER stress時EPRS可能具有保護的能力。EPRS主要為tRNA合成酶,而研究發現EPRS參與MSC (multi-aminoacyl-tRNA synthetase) and GAIT (IFN-γ-activated inhibitor of translation) complex的形成。為了進一步瞭解,這些和EPRS相關的複合物是否因參與ER stress調節,我們在過度表現Derlin-1的背景下抑制MSC和GAIT相關的基因。結果顯示抑制三個和MSC相關的骨架蛋白Aminoacyl-tRNA synthetase-interacting multifunctional proteins 1-3 (AIMPs)可減緩Derlin-1所誘導的毒性。MSC主要是用來和tRNAs結合幫助蛋白質合成,但抑制AIMPs會阻礙蛋白的合成外同時有效緩解ER stress。此外抑制AIMPs使EPRS被釋放對Derlin-1所造成的細胞凋亡和調節細胞內部的平衡有所幫助。總結來說我們提供一個新穎機制對於調節ER stress中Derlin-1和蛋白合成之間的連接。
The production of misfolded proteins in the Endoplasmic reticulum (ER) triggers ER stress response, complex intracellular signaling pathways for re-establishing ER homeostasis. We have previously identified an ER membrane protein Derlin-1 whose expression is induced by ER stress, and its overexpression would elicit apoptosis. In this process, we found glutamyl-prolyl-tRNA synthetase (EPRS) appeared to modify Derlin-1-induced cytotoxicity and directly interact with Derlin-1, but the detailed mechanism was unclear. Here, I harness genetic screens and pharmacological assays to dissect the underlying mechanism of EPRS in ER stress response. Flies with ectopic expression of Derlin-1 or ER stressor Tunicamycin (TM) treatment both induce EPRS expression, supporting a role of EPRS in ER stress response. Genetic knockdown of endogenous EPRS could exacerbate Derlin-1-induced cytotoxicity and shorten TM-induced life span. Conversely, enhancing EPRS level by expressing wildtype transgene could suppress Derlin-1- and TM-induced phenotype, indicating EPRS may have a protective role in ER stress signaling. EPRS is a canonical tRNA synthetase, but additional roles have been reported, which include the involvement of MSC (multi-aminoacyl-tRNA synthetase) and GAIT (IFN-γ-activated inhibitor of translation) complex formation. To further delineate whether these EPRS-involved complexes might participate in ER stress regulation, I use RNA-inhibition approach to selectively knockdown MSC and GAIT-associated genes in Derlin-1 overexpression model. The results show the reduction of three MSC scaffold components, Aminoacyl-tRNA synthetase-interacting multifunctional proteins 1-3 (AIMPs), could ameliorate Derlin-1-induced cytotoxicity, supporting a role of MSC in regulating ER stress response. Because MSC is reserved for recharging tRNAs and thus required for protein synthesis, the knockdown of AIMPs could hinder protein production which is beneficial when cells are under ER stress. Moreover, the release of EPRS upon AIMPs knockdown may help to divert Derlin-1-mediated apoptosis and leave the cells to re-establish homeostasis. Altogether, our data provide a novel mechanism of ER stress regulation in connecting to Derlin-1 signaling and protein synthesis.
Abstract I
中文摘要 III
Introduction 1
Material and methods 8
Drosophila genetics and molecular biology 8
Scanning electron micrographs 8
Immunohistochemistry 8
Tunicamycin (TM) treatment 9
Heat shock condition 9
Drosophila protein extraction and Western blot 10
Result 11
Screening Derlin-1 association protein 11
ER stress induces Derlin-1 and EPRS expression 12
Modulation of EPRS does not affect Derlin-1 expression 13
GAIT complex lacks a role in modifying ER stress 14
MSC may have a close link to the ER stress regulation 15
AIMPs distribution can be regulated by ER stress 17
Discussion 19
Other MSC associate protein in ER stress response 19
AIMPs and EPRS relationship in ER stress condition 20
Figure 21
References 40
Arif, A., Jia, J., Mukhopadhyay, R., Willard, B., Kinter, M., & Fox, P. (2009). Two-Site Phosphorylation of EPRS Coordinates Multimodal Regulation of Noncanonical Translational Control Activity. Molecular Cell, 35(2), 164-180. doi: 10.1016/j.molcel.2009.05.028

Arif, A., Yao, P., Terenzi, F., Jia, J., Ray, P., & Fox, P. (2017). The GAIT translational control system. Wiley Interdisciplinary Reviews: RNA, 9(2), e1441. doi: 10.1002/wrna.1441

Braakman, I., & Bulleid, N. (2011). Protein Folding and Modification in the Mammalian Endoplasmic Reticulum. Annual Review Of Biochemistry, 80(1), 71-99. doi: 10.1146/annurev-biochem-062209-093836

Carvalho, P., Goder, V., & Rapoport, T. (2006). Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins. Cell, 126(2), 361-373. doi: 10.1016/j.cell.2006.05.043

Friedlander, R., Jarosch, E., Urban, J., Volkwein, C., & Sommer, T. (2000). A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nature Cell Biology, 2(7), 379-384. doi: 10.1038/35017001

Garrido, J., Maruo, S., Takada, K., & Rosendorff, A. (2009). EBNA3C interacts with Gadd34 and counteracts the unfolded protein response. Virology Journal, 6(1), 231. doi: 10.1186/1743-422x-6-231

Garrido, J., Maruo, S., Takada, K., & Rosendorff, A. (2009). EBNA3C interacts with Gadd34 and counteracts the unfolded protein response. Virology Journal, 6(1), 231. doi: 10.1186/1743-422x-6-231

Greenblatt, E., Olzmann, J., & Kopito, R. (2011). Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nature Structural & Molecular Biology, 18(10), 1147-1152. doi: 10.1038/nsmb.2111

Hamilton, T., & Flynn, G. (1996). Cer1p, a Novel Hsp70-related Protein Required for Posttranslational Endoplasmic Reticulum Translocation in Yeast. Journal Of Biological Chemistry, 271(48), 30610-30613. doi: 10.1074/jbc.271.48.30610

Han, J., Kim, J., & Kim, S. (2003). Molecular network and functional implications of macromolecular tRNA synthetase complex. Biochemical And Biophysical Research Communications, 303(4), 985-993. doi: 10.1016/s0006-291x(03)00485-6

Han, J., Park, B., Park, S., Oh, Y., Choi, S., & Lee, S. et al. (2008). AIMP2/p38, the scaffold for the multi-tRNA synthetase complex, responds to genotoxic stresses via p53. Proceedings Of The National Academy Of Sciences, 105(32), 11206-11211. doi: 10.1073/pnas.0800297105

Harding, H., Zeng, H., Zhang, Y., Jungries, R., Chung, P., & Plesken, H. et al. (2001). Diabetes Mellitus and Exocrine Pancreatic Dysfunction in Perk−/− Mice Reveals a Role for Translational Control in Secretory Cell Survival. Molecular Cell, 7(6), 1153-1163. doi: 10.1016/s1097-2765(01)00264-7

Hoozemans, J., van Haastert, E., Eikelenboom, P., de Vos, R., Rozemuller, J., & Scheper, W. (2007). Activation of the unfolded protein response in Parkinson’s disease.

Iwasaki, N., Sugiyama, Y., Miyazaki, S., Nakagawa, H., Nishimura, K., & Matsuo, S. (2015). An ATF4-Signal-Modulating Machine Other Than GADD34 Acts in ATF4-to-CHOP Signaling to Block CHOP Expression in ER-Stress-Related Autophagy. Journal Of Cellular Biochemistry, 116(7), 1300-1309. doi: 10.1002/jcb.25085

Kim, J., Kang, Y., Lee, J., Kim, H., Ahn, Y., & Park, H. et al. (2002). p38 is essential for the assembly and stability of macromolecular tRNA synthetase complex: Implications for its physiological significance. Proceedings Of The National Academy Of Sciences, 99(12), 7912-7916. doi: 10.1073/pnas.122110199

Kim, M., Park, B., Kang, Y., Kim, H., Park, J., & Kang, J. et al. (2003). Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation. Nature Genetics, 34(3), 330-336. doi: 10.1038/ng1182

Liang, C., Chang, Y., Chang, H., Wang, C., Hung, Y., & Lin, Y. et al. (2014). Derlin-1 Regulates Mutant VCP-Linked Pathogenesis and Endoplasmic Reticulum Stress-Induced Apoptosis. Plos Genetics, 10(9), e1004675. doi: 10.1371/journal.pgen.1004675

Lindholm, D., Wootz, H., & Korhonen, L. (2006). ER stress and neurodegenerative diseases. Cell Death And Differentiation, 13(3), 385-392. doi: 10.1038/sj.cdd.4401778

McCracken A, Brodsky J. Recognition and Delivery of ERAD Substrates to the Proteasome and Alternative Paths for Cell Survival. 2006.

Moenner, M., Pluquet, O., Bouchecareilh, M., & Chevet, E. (2007). Integrated Endoplasmic Reticulum Stress Responses in Cancer. Cancer Research, 67(22), 10631-10634. doi: 10.1158/0008-5472.can-07-1705

Mori, A., Yamashita, S., Uchino, K., Suga, T., Ikeda, T., & Takamatsu, K. et al. (2011). stress by reducing mutant SOD1 accumulation. Neurochemistry International, 58(3), 344-353. doi: 10.1016/j.neuint.2010.12.010

Nakatsukasa, K., & Brodsky, J. (2008). The Recognition and Retrotranslocation of Misfolded Proteins from the Endoplasmic Reticulum. Traffic, 9(6), 861-870. doi: 10.1111/j.1600-0854.2008.00729.x

Norcum, M., & Warrington, J. (2000). The Cytokine Portion of p43 Occupies a Central Position within the Eukaryotic Multisynthetase Complex. Journal Of Biological Chemistry, 275(24), 17921-17924. doi: 10.1074/jbc.c000266200

Ozcan, U. (2004). Endoplasmic Reticulum Stress Links Obesity, Insulin Action, and Type 2 Diabetes. Science, 306(5695), 457-461. doi: 10.1126/science.1103160

Park, B., Kang, J., Lee, S., Choi, S., Shin, Y., & Ahn, Y. et al. (2005). The Haploinsufficient Tumor Suppressor p18 Upregulates p53 via Interactions with ATM/ATR. Cell, 120(2), 209-221. doi: 10.1016/j.cell.2004.11.054

Park, B., Oh, Y., Park, S., Choi, S., Rudolph, C., Schlegelberger, B., & Kim, S. (2006). AIMP3 Haploinsufficiency Disrupts Oncogene-Induced p53 Activation and Genomic Stability. Cancer Research, 66(14), 6913-6918. doi: 10.1158/0008-5472.can-05-3740

Park, H., Park, S., Kim, J., Ko, Y., & Kim, S. (2002). Signaling Pathways for TNF Production induced By Human Aminoacyl-tRNA Synthetase-Associating Factor, p43. Cytokine, 20(4), 148-153. doi: 10.1006/cyto.2002.1992

Raciti, M., Lotti, L., Valia, S., Pulcinelli, F., & Di Renzo, L. (2012). JNK2 is activated during ER stress and promotes cell survival. Cell Death & Disease, 3(11), e429-e429. doi: 10.1038/cddis.2012.167

Rho SB, Kim MJ, Lee JS, Seol W, Motegi H, Kim S, Shiba K. (1999) Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. Proc Natl Acad Sci U S A. 96(8):4488-93.

Rho, S., Lee, J., Jeong, E., Kim, K., Kim, Y., & Kim, S. (1998). A Multifunctional Repeated Motif Is Present in Human Bifunctional tRNA Synthetase. Journal Of Biological Chemistry, 273(18), 11267-11273. doi: 10.1074/jbc.273.18.11267

Ron, D., & Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology, 8(7), 519-529. doi: 10.1038/nrm2199

Sampath, P., Mazumder, B., Seshadri, V., Gerber, C., Chavatte, L., & Kinter, M. et al. (2004). Noncanonical Function of Glutamyl-Prolyl-tRNA Synthetase. Cell, 119(2), 195-208. doi: 10.1016/j.cell.2004.09.030

Sano, Renata, and John C. Reed. 2013. "ER Stress-Induced Cell Death Mechanisms". Biochimica Et Biophysica Acta (BBA) - Molecular Cell Research 1833 (12): 3460-3470. doi:10.1016/j.bbamcr.2013.06.028.

Sitia, R., & Braakman, I. (2003). Quality control in the endoplasmic reticulum protein factory. Nature, 426(6968), 891-894. doi: 10.1038/nature02262

Tay, K., Luan, Q., Croft, A., Jiang, C., Jin, L., Zhang, X., & Tseng, H. (2014). Sustained IRE1 and ATF6 signaling is important for survival of melanoma cells undergoing ER stress. Cellular Signalling, 26(2), 287-294. doi: 10.1016/j.cellsig.2013.11.008

Wang, L., Popko, B., & Roos, R. (2013). An enhanced integrated stress response ameliorates mutant SOD1-induced ALS. Human Molecular Genetics, 23(10), 2629-2638. doi: 10.1093/hmg/ddt658

Ye, J., Rawson, R., Komuro, R., Chen, X., Davé, U., & Prywes, R. et al. (2000). ER Stress Induces Cleavage of Membrane-Bound ATF6 by the Same Proteases that Process SREBPs. Molecular Cell, 6(6), 1355-1364. doi: 10.1016/s1097-2765(00)00133-7

Ye, Y., Shibata, Y., Yun, C., Ron, D., & Rapoport, T. (2004). A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature, 429(6994), 841-847. doi: 10.1038/nature02656

Yin, J., Gu, L., Wang, Y., Fan, N., Ma, Y., & Peng, Y. (2015). Rapamycin Improves Palmitate-Induced ER Stress/NFκB Pathways Associated with Stimulating Autophagy in Adipocytes. Mediators Of Inflammation, 2015, 1-12. doi: 10.1155/2015/272313

Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R., Nagata, K., & Mori, K. (2003). A Time-Dependent Phase Shift in the Mammalian Unfolded Protein Response. Developmental Cell, 4(2), 265-271. doi: 10.1016/s1534-5807(03)00022-4

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *