帳號:guest(18.191.238.60)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳瑩慈
作者(外文):Chen, Ying-Cih
論文名稱(中文):降低磷脂酰肌醇循環基因表現對於果蠅壽命影響之研究
論文名稱(外文):The study of the reduced expression of phosphatidylinositol cycle genes on Drosophila lifespan
指導教授(中文):汪宏達
指導教授(外文):Wang, Horng-Dar
口試委員(中文):王培育
詹智強
口試委員(外文):Wang, Pei-Yu
Chan, Chih-Chiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:105080600
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:46
中文關鍵詞:果蠅壽命磷脂酉先肌醇循環
外文關鍵詞:drosophilalifespanphosphatidylinositol cycle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
磷脂酰肌醇(PI)循環在果蠅眼睛視神經光傳導中扮演重要角色。我們先前研究發現,在神經元中二酰基甘油脂肪酶(DAGL / inaE)過表現量或視網膜退化A(rdgA,編碼二酰甘油激酶)和視網膜退化B(rdgB,編碼磷脂酰肌醇轉移蛋白)的表現量降低可以透過減少雷帕黴素的靶標活性(Target of rapamycin, TOR)來延長果蠅壽命,這三種基因都參與磷脂酰肌醇循環。秀麗隱桿線蟲egl-8(磷脂酰肌醇磷脂酶Cβ;PLCβ)被發現突變後可以延長壽命的其他基因。其他磷脂酰肌醇循環基因是否可以調控果蠅的壽命仍然未知。在本篇研究中,我們透過appl-Gal4和elav-Gal4在神經元或da-Gal4全身性降低Lazaro (laza,脂磷酸磷酸酶,也稱為LPP),磷脂酶D(Pld),CDP-DAG合成酶(cdsA),PI激酶(Pi4KII),PLCβ(norpA)基因表現量,並測量它們的壽命變化。在神經元中發現,減少laza,Pld和Pi4KIIα的表現量都顯示壽命的增加,但在cdsA或norpA中沒有看見壽命延長現象。然而,全身性減少基因表現量都沒有顯示出明顯增強的壽命現象,與我們先前的發現一致。透過確認磷酸化S6K蛋白量,在神經元中降低laza,Pld和Pi4KIIα的表現量也伴隨著TOR活性的下降。在我們的研究結果為一些磷脂酰肌醇循環基因如何調控果蠅壽命提供了新的見解。
Phosphatidylinositol (PI) cycle plays an important role in Drosophila phototransduction. Our pervious publications indicate that overexpression of diacylglycerol lipase (DAGL/inaE), or knockdown of retinal degeneration A (rdgA, encoding diacylglycerol kinase) or retinal degeneration B (rdgB, encoding phosphatidylinositol transfer protein) in neurons can extend lifespan via reducing target of rapamycin (TOR) activity in Drosophila, which all three genes participate in PI cycle. C. elegans egl-8 (phosphatidylinositol phospholipase Cβ; PLCβ) is the only other gene reported to enhance lifespan upon mutation. Whether the other PI cycle genes can regulate lifespan in Drosophila remains unknown. Here, we performed systematic knockdown of Lazaro (laza, lipid phosphate phosphatase, also as LPP), Phospholipase D (Pld), CDP-DAG syntase (cdsA), PI kinase (Pi4KII), PLCβ (norpA) genes in neuron by appl-Gal4 and elav-Gal4 or ubiquitously by da-Gal4 and measured their lifespan changes. The results indicate that in neurons knockdown of laza, Pld, and Pi4KII each displays increased lifespan, but not found in cdsA, or norpA. However, none of them by ubiquitous knockdown exhibits any significantly enhanced lifespan, which is consistent with our previous finding. The knockdown of laza, Pld, and Pi4KII in neurons is also accompanied with decreased TOR activity by checking their phosphorylated-S6K protein levels. Our results provide new insights into how some of phosphatidylinositol cycle genes regulate lifespan in Drosophila.
Abstract i
中文摘要 ii
致謝 iii
Table of Content 1
Introduction 2
Materials and methods 5
Fly strains and culture 5
Drosophila lifespan assays 5
RNA extraction and reverse transcription (RT-PCR) 5
Quantitative PCR (Q-PCR) 6
Immunoblotting 6
Results 8
Knockdown of laza in neurons extends lifespan in Drosophila 8
Knockdown of Pld in neurons extends lifespan in Drosophila 9
Knockdown of Pi4KIIa in neurons and ubiquitously can extend lifespan in Drosophila 9
Knockdown of norpA ubiquitously in female decreases and in male increases lifespan in Drosophila 10
Knockdown of cdsA in neurons and ubiquitously does not alter lifespan in Drosophila 10
The longevity flies with the knockdown of laza, Pld and Pi4KIIa show reduced levels of phosphorylated S6 kinase in Drosophila 11
Discussion 12
Figures 15
Tables 33
References 44
Bravo, F. V., Da Silva, J., Chan, R. B., Di Paolo, G., Teixeira-Castro, A., & Oliveira, T. G. (2018). Phospholipase D functional ablation has a protective effect in an Alzheimer's disease Caenorhabditis elegans model. Sci Rep, 8(1), 3540. doi:10.1038/s41598-018-21918-5
Brindley, D. N., Pilquil, C., Sariahmetoglu, M., & Reue, K. (2009). Phosphatidate degradation: phosphatidate phosphatases (lipins) and lipid phosphate phosphatases. Biochim Biophys Acta, 1791(9), 956-961. doi:10.1016/j.bbalip.2009.02.007
Burger, J. M., & Promislow, D. E. (2004). Sex-specific effects of interventions that extend fly life span. Sci Aging Knowledge Environ, 2004(28), pe30. doi:10.1126/sageke.2004.28.pe30
Ch'ng, Q., Sieburth, D., & Kaplan, J. M. (2008). Profiling synaptic proteins identifies regulators of insulin secretion and lifespan. PLoS Genet, 4(11), e1000283. doi:10.1371/journal.pgen.1000283
Chandegra, B., Tang, J. L. Y., Chi, H., & Alic, N. (2017). Sexually dimorphic effects of dietary sugar on lifespan, feeding and starvation resistance in Drosophila. Aging (Albany NY), 9(12), 2521-2528. doi:10.18632/aging.101335
Chang, S.-H. (2017). retinal degeneration B regulates lifespan and age-related locomotor decline in Drosophila. (MS Master degree), National Tsing Hua University, HsinChu.
Cybulski, N., & Hall, M. N. (2009). TOR complex 2: a signaling pathway of its own. Trends Biochem Sci, 34(12), 620-627. doi:10.1016/j.tibs.2009.09.004
Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 408(6809), 239-247. doi:10.1038/35041687
Fischer, J. A., Giniger, E., Maniatis, T., & Ptashne, M. (1988). GAL4 activates transcription in Drosophila. Nature, 332(6167), 853-856. doi:10.1038/332853a0
FlyBase, C. (1998). FlyBase: a Drosophila database. Nucleic Acids Res, 26(1), 85-88.
Foster, D. A., Salloum, D., Menon, D., & Frias, M. A. (2014). Phospholipase D and the maintenance of phosphatidic acid levels for regulation of mammalian target of rapamycin (mTOR). J Biol Chem, 289(33), 22583-22588. doi:10.1074/jbc.R114.566091
Garcia-Murillas, I., Pettitt, T., Macdonald, E., Okkenhaug, H., Georgiev, P., Trivedi, D., . . . Raghu, P. (2006). lazaro encodes a lipid phosphate phosphohydrolase that regulates phosphatidylinositol turnover during Drosophila phototransduction. Neuron, 49(4), 533-546. doi:10.1016/j.neuron.2006.02.001
Guarente, L., & Kenyon, C. (2000). Genetic pathways that regulate ageing in model organisms. Nature, 408(6809), 255-262. doi:10.1038/35041700
Hardie, R. C., & Juusola, M. (2015). Phototransduction in Drosophila. Curr Opin Neurobiol, 34, 37-45. doi:10.1016/j.conb.2015.01.008
He, Y., & Jasper, H. (2014). Studying aging in Drosophila. Methods, 68(1), 129-133. doi:10.1016/j.ymeth.2014.04.008
Katewa, S. D., & Kapahi, P. (2011). Role of TOR signaling in aging and related biological processes in Drosophila melanogaster. Exp Gerontol, 46(5), 382-390. doi:10.1016/j.exger.2010.11.036
Katz, B., & Minke, B. (2009). Drosophila photoreceptors and signaling mechanisms. Front Cell Neurosci, 3, 2. doi:10.3389/neuro.03.002.2009
Krauss, M., & Haucke, V. (2007). Phosphoinositides: regulators of membrane traffic and protein function. FEBS Lett, 581(11), 2105-2111. doi:10.1016/j.febslet.2007.01.089
Kwon, Y., & Montell, C. (2006). Dependence on the Lazaro phosphatidic acid phosphatase for the maximum light response. Curr Biol, 16(7), 723-729. doi:10.1016/j.cub.2006.02.057
Lin, K. W., Nam, S. Y., Toh, W. H., Dulloo, I., & Sabapathy, K. (2004). Multiple stress signals induce p73beta accumulation. Neoplasia, 6(5), 546-557. doi:10.1593/neo.04205
Lin, Y. H., Chen, Y. C., Kao, T. Y., Lin, Y. C., Hsu, T. E., Wu, Y. C., . . . Wang, H. D. (2014). Diacylglycerol lipase regulates lifespan and oxidative stress response by inversely modulating TOR signaling in Drosophila and C. elegans. Aging Cell, 13(4), 755-764. doi:10.1111/acel.12232
Liu, Y. L., Lu, W. C., Brummel, T. J., Yuh, C. H., Lin, P. T., Kao, T. Y., . . . Wang, H. D. (2009). Reduced expression of alpha-1,2-mannosidase I extends lifespan in Drosophila melanogaster and Caenorhabditis elegans. Aging Cell, 8(4), 370-379. doi:10.1111/j.1474-9726.2009.00471.x
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217. doi:10.1016/j.cell.2013.05.039
Narasimhan, S. D., Yen, K., & Tissenbaum, H. A. (2009). Converging pathways in lifespan regulation. Curr Biol, 19(15), R657-666. doi:10.1016/j.cub.2009.06.013
Osterwalder, T., Yoon, K. S., White, B. H., & Keshishian, H. (2001). A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci U S A, 98(22), 12596-12601. doi:10.1073/pnas.221303298
Partridge, L., Alic, N., Bjedov, I., & Piper, M. D. (2011). Ageing in Drosophila: the role of the insulin/Igf and TOR signalling network. Exp Gerontol, 46(5), 376-381. doi:10.1016/j.exger.2010.09.003
Powers, R. W., 3rd, Kaeberlein, M., Caldwell, S. D., Kennedy, B. K., & Fields, S. (2006). Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev, 20(2), 174-184. doi:10.1101/gad.1381406
Schopf, K., & Huber, A. (2017). Membrane protein trafficking in Drosophila photoreceptor cells. Eur J Cell Biol, 96(5), 391-401. doi:10.1016/j.ejcb.2016.11.002
Tower, J. (2017). Sex-Specific Gene Expression and Life Span Regulation. Trends Endocrinol Metab, 28(10), 735-747. doi:10.1016/j.tem.2017.07.002
Vellai, T., Takacs-Vellai, K., Zhang, Y., Kovacs, A. L., Orosz, L., & Muller, F. (2003). Genetics: influence of TOR kinase on lifespan in C. elegans. Nature, 426(6967), 620. doi:10.1038/426620a
Waggoner, D. W., Xu, J., Singh, I., Jasinska, R., Zhang, Q. X., & Brindley, D. N. (1999). Structural organization of mammalian lipid phosphate phosphatases: implications for signal transduction. Biochim Biophys Acta, 1439(2), 299-316.
Wu, Y.-C. (2017). The study of retinal degeneration B in Drosophila lifespan regulation. (BS Bachelor degree), National Tsing Hua University, HsinChu.
Yook, K., & Hodgkin, J. (2007). Mos1 mutagenesis reveals a diversity of mechanisms affecting response of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics, 175(2), 681-697. doi:10.1534/genetics.106.060087
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *