帳號:guest(18.223.206.215)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林品豪
作者(外文):Lin, Pin-Hao
論文名稱(中文):不同電荷分布之抗菌胜肽與抗生素對多重耐藥臨床菌株的協同作用
論文名稱(外文):Synergistic Effect of Antimicrobial Peptides with Different Charge Distribution and Antibiotics Against Multidrug Resistant Clinical Strains
指導教授(中文):程家維
指導教授(外文):Cheng, Jya-Wei
口試委員(中文):陳金榜
龍鳳娣
周裕珽
口試委員(外文):Chen, Chin-Pan
Lung, Feng-Di
Chou, Yu-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:105080599
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:34
中文關鍵詞:抗菌胜肽萬古黴素多重抗藥性協同功效
外文關鍵詞:antimicrobial peptidevancomycinmulti-drug resistantcombination effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:213
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來由於抗生素之濫用,多重抗藥性菌株對於臨床上釀成極大危害。可以利用抗菌胜肽與傳統的抗生素共同使用,達到協同治療的療效。
  實驗室先前研究發現,萬古黴素原對革蘭氏陰性菌菌株沒有抑菌能力,在與設計的S1系列抗菌胜肽合併使用後,萬古黴素產生抑菌的能力。本篇研究是根據三色矛頭蝮之蛇毒蛋白片段PEM2保留其蛋白二級螺旋結構及雙極性的特色所設計出WLK系列的蛋白片段。運用WLK、WLK01及WLK11三條不同電荷分布之蛋白片段,探討將這些抗菌胜肽分別與三大類抗生素Vancomycin、Tetracycline、Ciprofloxacin,對於臨床抗藥性菌株,包括革蘭氏陽性菌Enterococcus faecium以及革蘭氏陰性菌Escherichia coli、Acinetobacter baumannii,抑菌能力(MIC assay)與蛋白片段中電荷分佈差異對協同機制之影響。
  首先我們先做了單株菌對於抗生素以及抗菌胜肽的抑菌試驗(MIC assay),顯示挑選的菌對於抗生素皆有抗性;接著進行棋盤格試驗(Checkerboard assay),發現在合併使用後,多數有著協同的效果,而較特別的是Vancomycin本對於陰性菌沒有抑菌效果,在加入低濃度的抗菌胜肽合併使用後,有著很好的抑菌效果;接著,利用了螢光標定的Vancomycin在螢光顯微鏡下證實加入我們的抗菌胜肽後,可以幫助Vancomycin在細菌的作用位置作用;最後我們利用了Calcein AM試劑測試,結果顯示使用的抗菌胜肽對於選用的抗藥性菌株皆有著優異的擾膜破膜效果,而抗菌胜肽的正電荷分佈推測其影響不是最主要影響協同機制的效果。
Recently, due to the abuse of antibiotics, the multi-drug resistant strains are caused the great harmfulness to clinical. To solve these problems, the previous study show that can use the antimicrobial peptide combination with the traditional antibiotics to achieve synergy effect.
  Vancomycin, which had no therapeutic effect on the Gram-negative bacteria. Our laboratory previous studies have found that Vancomycin combined with S1 series antimicrobial peptides could be against Gram-negative bacteria. In this study, we used the WLK series of peptides which were designed from the PEM2 which was derived from the C-terminal of enzyme myotoxin II in the venom of Bothrops asper [1]. WLK series peptides retain the secondary helix structure and bipolar characteristics. We choose three different protein fragments of charge distribution WLK、WLK01、WLK11 and three widely used antibiotics, Vancomycin, Tetracycline and Ciprofloxacin to against the multi-drug resistant clinical bacteria, including Gram positive bacteria:Enterococcus faecium, and Gram negative bacteria:Escherichia coli and Acinetobacter baumannii to explore the ability and the effect between the difference in charge distribution in protein fragment and explore the synergy mechanism.
  The Minimum inhibitory concentration assay results showed that the selected strains are resistant to antibiotics. And the checkerboard assay demonstrated that antimicrobial peptides combined with antibiotics showed good synergy. Co-treatment of resistant strains with antimicrobial peptides led to increased uptake of BODIPY labeled vancomycin. The result of calcein-AM assay demonstrated that WLK series antimicrobial peptides have rapid and effective permeabilizing activity, and the activity is correlated with fluorscence experiment. The result supports our hypothesis that the membrane-permeabilizing activity may destroy the integrity of bacteria membrane and lead to increased access of antibiotics to their target. According to the sequence of antimicrobial peptide, positive charge distribution speculates that its effect is not the most important effect on the synergistic mechanism.
中文摘要 ........................................................I
Abstract .......................................................II
Acknowledgement ................................................IV
Contents .......................................................V
Chapter 1 Introduction .........................................1
1-1 Challenge of antimicrobial peptide and drug resistance .....1
1-2 Antibiotic resistance ......................................2
1-3 Synergy effect .............................................5
1-4 Aim of this study ..........................................6
Chapter 2 Materials and Methods ................................7
2-1 Materials ..................................................7
2-2 Quantization of the peptide ................................8
2-3 Bioassay for antimicrobial activity ........................8
2-4 Checkerboard assay for antimicrobial activities ............9
2-5 Calcein acetoxymethyl ester (Calcein AM) --- dye leakage ...10
2-6 Combination effect evaluated by using fluorescence microscope ................................................................11
Chapter 3 Result ...............................................13
3-1 Antimicrobial activities in MIC assays .....................13
3-2 Combination therapy analysis ...............................13
3-3 Peptides increase Vancomycin effect in multidrug resistant strains ........................................................15
3-4 Integrity of bacterial membrane ............................16
Chapter 4 Discussion ...........................................17
Figure and Tables ..............................................21
Table 1. Primary structure of WLK and its analogues. ...........21
Table 2. Minimum inhibitory concentration results of the antibiotics and peptides against multi-drug resistant strains. .22
Table 3. The fractional inhibitory concentration index range of peptides in combination with antibiotics against multidrug resistant bacteria. ............................................23
Figure 1. Fluorescence Microscopy:Uptake of labeled vancomycin in Enterococcus faecium - VRE132 (BCRC 15B0132) strain. ...........24
Figure 2. Fluorescence Microscopy: Uptake of labeled vancomycin in Acinetobacter baumannii - Ab97 (BCRC 14B0097) strain. ..........25
Figure 3. Fluorescence Microscopy:Uptake of labeled vancomycin in Escherichia coli – E.coli 207 (BCRC 13B0207) strain. ...........26
Figure 4. Permeabilization of the cytoplasmic membrane of Enterococcus faecium strain. ...................................27
Figure 5. Permeabilization of the cytoplasmic membrane of Acinetobacter baumannii strains. ...............................28
Figure 6. Permeabilization of the cytoplasmic membrane of Escherichia coli strains. ......................................29
Reference ......................................................30
1. Yu, H.Y., et al., Easy strategy to increase salt resistance of antimicrobial peptides. Antimicrob Agents Chemother, 2011. 55(10): p. 4918-21.
2. Nguyen, L.T., E.F. Haney, and H.J. Vogel, The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol, 2011. 29(9): p. 464-72.
3. Hancock, R.E. and H.G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol, 2006. 24(12): p. 1551-7.
4. Reddy, K.V., R.D. Yedery, and C. Aranha, Antimicrobial peptides: premises and promises. Int J Antimicrob Agents, 2004. 24(6): p. 536-47.
5. Brown, K.L. and R.E. Hancock, Cationic host defense (antimicrobial) peptides. Curr Opin Immunol, 2006. 18(1): p. 24-30.
6. Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature, 2002. 415(6870): p. 389-95.
7. Malanovic, N. and K. Lohner, Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochim Biophys Acta, 2016. 1858(5): p. 936-46.
8. Anunthawan, T., et al., Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochim Biophys Acta, 2015. 1848(6): p. 1352-8.
9. Choi, H., N. Rangarajan, and J.C. Weisshaar, Lights, Camera, Action! Antimicrobial Peptide Mechanisms Imaged in Space and Time. Trends Microbiol, 2016. 24(2): p. 111-122.
10. Bechinger, B. and S.U. Gorr, Antimicrobial Peptides: Mechanisms of Action and Resistance. J Dent Res, 2017. 96(3): p. 254-260.
11. Antimicrobial Resistance Global Report on Surveillance 2017.
France: World Health Organization, 2017. .
12. Mohammad, H., S. Thangamani, and M.N. Seleem, Antimicrobial peptides and peptidomimetics - potent therapeutic allies for staphylococcal infections. Curr Pharm Des, 2015. 21(16): p. 2073-88.
13. NHS., Antibiotics. 2014.
14. Harbarth, S., et al., Antimicrobial resistance: one world, one fight! : Antimicrob Resist Infect Control. 2015;4:49. doi:10.1186/s13756-015-0091-2.
15. Blair, J.M.A., et al., Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 2014. 13: p. 42.
16. Morgan, D.J., et al., Non-prescription antimicrobial use worldwide: a systematic review. Lancet Infect Dis, 2011. 11(9): p. 692-701.
17. Rice, L.B., Do we really need new anti-infective drugs? Curr Opin Pharmacol, 2003. 3(5): p. 459-63.
18. Walsh, C., Molecular mechanisms that confer antibacterial drug resistance. Nature, 2000. 406(6797): p. 775-81.
19. Neu HC, G.T., Antimicrobial Chemotherapy. 4 th ed. Medical Microbiology., ed. B. S. 1996, Galveston (TX): University of Texas Medical Branch at Galveston.
20. Bugg, T.D. and C.T. Walsh, Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep, 1992. 9(3): p. 199-215.
21. Tomasz, A., The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol, 1979. 33: p. 113-37.
22. Kohanski, M.A., D.J. Dwyer, and J.J. Collins, How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol, 2010. 8(6): p. 423-35.
23. Kahne, D., et al., Glycopeptide and lipoglycopeptide antibiotics. Chem Rev, 2005. 105(2): p. 425-48.
24. Nissen, P., et al., The structural basis of ribosome activity in peptide bond synthesis. Science, 2000. 289(5481): p. 920-30.
25. Chopra, I. and M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev, 2001. 65(2): p. 232-60 ; second page, table of contents.
26. Drlica, K. and M. Snyder, Superhelical Escherichia coli DNA: relaxation by coumermycin. J Mol Biol, 1978. 120(2): p. 145-54.
27. Espeli, O. and K.J. Marians, Untangling intracellular DNA topology. Mol Microbiol, 2004. 52(4): p. 925-31.
28. Gellert, M., et al., DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc Natl Acad Sci U S A, 1976. 73(11): p. 3872-6.
29. Drlica, K., et al., Quinolone-mediated bacterial death. Antimicrob Agents Chemother, 2008. 52(2): p. 385-92.
30. Rubinstein, E., History of quinolones and their side effects. Chemotherapy, 2001. 47 Suppl 3: p. 3-8; discussion 44-8.
31. Greco, W.R., G. Bravo, and J.C. Parsons, The search for synergy: a critical review from a response surface perspective. Pharmacol Rev, 1995. 47(2): p. 331-85.
32. Chou, T.C., Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev, 2006. 58(3): p. 621-81.
33. Imamovic, L. and M.O. Sommer, Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci Transl Med, 2013. 5(204): p. 204ra132.
34. Cokol, M., et al., Systematic exploration of synergistic drug pairs. Mol Syst Biol, 2011. 7: p. 544.
35. Pena-Miller, R., et al., When the most potent combination of antibiotics selects for the greatest bacterial load: the smile-frown transition. PLoS Biol, 2013. 11(4): p. e1001540.
36. Yeh, P.J., et al., Drug interactions and the evolution of antibiotic resistance. Nat Rev Microbiol, 2009. 7(6): p. 460-6.
37. Chait, R., A. Craney, and R. Kishony, Antibiotic interactions that select against resistance. Nature, 2007. 446(7136): p. 668-71.
38. Ghaffar, K.A., et al., Levofloxacin and indolicidin for combination antimicrobial therapy. Curr Drug Deliv, 2015. 12(1): p. 108-14.
39. Wu, X., et al., Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des Devel Ther, 2017. 11: p. 939-946.
40. Desbois, A.P. and P.J. Coote, Bactericidal synergy of lysostaphin in combination with antimicrobial peptides. Eur J Clin Microbiol Infect Dis, 2011. 30(8): p. 1015-21.
41. Anantharaman, A., M.S. Rizvi, and D. Sahal, Synergy with rifampin and kanamycin enhances potency, kill kinetics, and selectivity of de novo-designed antimicrobial peptides. Antimicrob Agents Chemother, 2010. 54(5): p. 1693-9.
42. Mach, H., C.R. Middaugh, and R.V. Lewis, Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal Biochem, 1992. 200(1): p. 74-80.
43. Mohamed, M.F., et al., Targeting methicillin-resistant Staphylococcus aureus with short salt-resistant synthetic peptides. Antimicrob Agents Chemother, 2014. 58(7): p. 4113-22.
44. Thangamani, S., et al., Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Sci Rep, 2016. 6: p. 22571.
45. Hall, M.J., R.F. Middleton, and D. Westmacott, The fractional inhibitory concentration (FIC) index as a measure of synergy. J Antimicrob Chemother, 1983. 11(5): p. 427-33.
46. Xiong, Y.Q., et al., Functional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of Staphylococcus aureus. Antimicrob Agents Chemother, 2005. 49(8): p. 3114-21.
47. Vial, F., S. Rabhi, and C. Tribet, Association of octyl-modified poly(acrylic acid) onto unilamellar vesicles of lipids and kinetics of vesicle disruption. Langmuir, 2005. 21(3): p. 853-62.
48. Essodaigui, M., H.J. Broxterman, and A. Garnier-Suillerot, Kinetic analysis of calcein and calcein-acetoxymethylester efflux mediated by the multidrug resistance protein and P-glycoprotein. Biochemistry, 1998. 37(8): p. 2243-50.
49. Koo, S.P., A.S. Bayer, and M.R. Yeaman, Diversity in antistaphylococcal mechanisms among membrane-targeting antimicrobial peptides. Infect Immun, 2001. 69(8): p. 4916-22.
50. Mohamed, M.F., A. Abdelkhalek, and M.N. Seleem, Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep, 2016. 6.
51. Gould, I.M. and A.M. Bal, New antibiotic agents in the pipeline and how they can help overcome microbial resistance. Virulence, 2013. 4(2): p. 185-91.
52. Wright, G.D., Something old, something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol, 2014. 60(3): p. 147-54.
53. Golkar, Z., O. Bagasra, and D.G. Pace, Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries, 2014. 8(2): p. 129-36.
54. Centers for Disease Control and Prevention, Office of Infectious Disease Antibiotic resistance threats in the United States, 2013. Apr, 2013.
55. Ventola, C.L., The Antibiotic Resistance Crisis: Part 1: Causes and Threats. P t, 2015. 40(4): p. 277-83.
56. Uhlig, T., et al., The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteomics, 2014. 4: p. 58-69.
57. Chih, Y.H., et al., Ultrashort Antimicrobial Peptides with Antiendotoxin Properties. Antimicrob Agents Chemother, 2015. 59(8): p. 5052-6.
58. Hiramatsu, K., et al., Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother, 1997. 40(1): p. 135-6.
59. Breukink, E. and B. de Kruijff, Lipid II as a target for antibiotics. Nat Rev Drug Discov, 2006. 5(4): p. 321-32.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *