|
1. Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108. 2. Molina, J.R., et al., Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc, 2008. 83(5): p. 584-94. 3. Midha, A., S. Dearden, and R. McCormack, EGFR mutation incidence in nonsmall- cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am J Cancer Res, 2015. 5(9): p. 2892-911. 4. Mok, T.S., et al., Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med, 2009. 361(10): p. 947-57. 5. Paez, J.G., et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004. 304(5676): p. 1497-500. 6. Zhou, C., et al., Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol, 2011. 12(8): p. 735-42. 7. Sequist, L.V., et al., Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol, 2013. 31(27): p. 3327-34. 8. Maemondo, M., et al., Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med, 2010. 362(25): p. 2380-8. 9. Gasinska, A., et al., Clinical significance of biological differences between cavitated and solid form of squamous cell lung cancer. Lung Cancer, 2005. 49(2): p. 171-9. 10. Sharma, S.V., et al., Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer, 2007. 7(3): p. 169-81. 11. Mulloy, R., et al., Epidermal growth factor receptor mutants from human lung cancers exhibit enhanced catalytic activity and increased sensitivity to gefitinib. Cancer Res, 2007. 67(5): p. 2325-30. 12. Mitsudomi, T., et al., Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol, 2010. 11(2): p. 121-8. 13. Rosell, R., et al., Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med, 2009. 361(10): p. 958-67. 14. Arcila, M.E., et al., Rebiopsy of lung cancer patients with acquired resistance to EGFR inhibitors and enhanced detection of the T790M mutation using a locked 47 nucleic acid-based assay. Clin Cancer Res, 2011. 17(5): p. 1169-80. 15. Kobayashi, S., et al., EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med, 2005. 352(8): p. 786-92. 16. Sequist, L.V., et al., Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med, 2011. 3(75): p. 75ra26. 17. Pao, W., et al., Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med, 2005. 2(3): p. e73. 18. Yun, C.H., et al., The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A, 2008. 105(6): p. 2070- 5. 19. Cross, D.A., et al., AZD9291, an irreversible EGFR TKI, overcomes T790Mmediated resistance to EGFR inhibitors in lung cancer. Cancer Discov, 2014. 4(9): p. 1046-61. 20. Janne, P.A., et al., AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med, 2015. 372(18): p. 1689-99. 21. Thress, K.S., et al., Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med, 2015. 21(6): p. 560-2. 22. Piotrowska, Z., et al., Heterogeneity Underlies the Emergence of EGFRT790 Wild-Type Clones Following Treatment of T790M-Positive Cancers with a Third- Generation EGFR Inhibitor. Cancer Discov, 2015. 5(7): p. 713-22. 23. Ko, R., et al., Frequency of EGFR T790M mutation and multimutational profiles of rebiopsy samples from non-small cell lung cancer developing acquired resistance to EGFR tyrosine kinase inhibitors in Japanese patients. BMC Cancer, 2016. 16(1): p. 864. 24. Li, W., et al., T790M mutation is associated with better efficacy of treatment beyond progression with EGFR-TKI in advanced NSCLC patients. Lung Cancer, 2014. 84(3): p. 295-300. 25. Jakobsen, J.N. and J.B. Sorensen, Intratumor heterogeneity and chemotherapyinduced changes in EGFR status in non-small cell lung cancer. Cancer Chemother Pharmacol, 2012. 69(2): p. 289-99. 26. Gerlinger, M., et al., Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med, 2012. 366(10): p. 883-892. 27. Meacham, C.E. and S.J. Morrison, Tumour heterogeneity and cancer cell plasticity. Nature, 2013. 501(7467): p. 328-37. 28. Shipitsin, M., et al., Molecular definition of breast tumor heterogeneity. Cancer Cell, 2007. 11(3): p. 259-73. 48 29. Lin, S.C., et al., Epigenetic Switch between SOX2 and SOX9 Regulates Cancer Cell Plasticity. Cancer Res, 2016. 76(23): p. 7036-7048. 30. Schepers, A.G., et al., Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science, 2012. 337(6095): p. 730-5. 31. Quintana, E., et al., Phenotypic heterogeneity among tumorigenic melanoma cells from patients that is reversible and not hierarchically organized. Cancer Cell, 2010. 18(5): p. 510-23. 32. Sharma, S.V., et al., A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 2010. 141(1): p. 69-80. 33. Thomson, S., et al., Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. Cancer Res, 2005. 65(20): p. 9455- 62. 34. Yauch, R.L., et al., Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res, 2005. 11(24 Pt 1): p. 8686-98. 35. Witta, S.E., et al., Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res, 2006. 66(2): p. 944-50. 36. Hwang, W., et al., Expression of Neuroendocrine Factor VGF in Lung Cancer Cells Confers Resistance to EGFR Kinase Inhibitors and Triggers Epithelial-to- Mesenchymal Transition. Cancer Res, 2017. 77(11): p. 3013-3026. 37. Chen, B., et al., The role of epithelial-mesenchymal transition and IGF-1R expression in prediction of gefitinib activity as the second-line treatment for advanced nonsmall-cell lung cancer. Cancer Invest, 2013. 31(7): p. 454-60. 38. Fong, H., K.A. Hohenstein, and P.J. Donovan, Regulation of self-renewal and pluripotency by Sox2 in human embryonic stem cells. Stem Cells, 2008. 26(8): p. 1931-8. 39. Que, J., et al., Multiple roles for Sox2 in the developing and adult mouse trachea. Development, 2009. 136(11): p. 1899-907. 40. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76. 41. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72. 42. Tompkins, D.H., et al., Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated, and goblet cells. PLoS One, 2009. 4(12): p. e8248. 43. Azuara, V., et al., Chromatin signatures of pluripotent cell lines. Nat Cell Biol, 49 2006. 8(5): p. 532-8. 44. Bernstein, B.E., et al., A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 2006. 125(2): p. 315-26. 45. Clouaire, T., et al., Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev, 2012. 26(15): p. 1714-28. 46. Amador-Arjona, A., et al., SOX2 primes the epigenetic landscape in neural precursors enabling proper gene activation during hippocampal neurogenesis. Proc Natl Acad Sci U S A, 2015. 112(15): p. E1936-45. 47. Sholl, L.M., K.B. Long, and J.L. Hornick, Sox2 expression in pulmonary non-small cell and neuroendocrine carcinomas. Appl Immunohistochem Mol Morphol, 2010. 18(1): p. 55-61. 48. Lu, Y., et al., Evidence that SOX2 overexpression is oncogenic in the lung. PLoS One, 2010. 5(6): p. e11022. 49. Mu, P., et al., SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science, 2017. 355(6320): p. 84-88. 50. Chou, Y.T., et al., The emerging role of SOX2 in cell proliferation and survival and its crosstalk with oncogenic signaling in lung cancer. Stem Cells, 2013. 31(12): p. 2607-19. 51. Nelson, J.D., O. Denisenko, and K. Bomsztyk, Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat Protoc, 2006. 1(1): p. 179-85. 52. Dogan, I., et al., SOX2 expression is an early event in a murine model of EGFR mutant lung cancer and promotes proliferation of a subset of EGFR mutant lung adenocarcinoma cell lines. Lung Cancer, 2014. 85(1): p. 1-6. 53. Rothenberg, S.M., et al., Inhibition of mutant EGFR in lung cancer cells triggers SOX2-FOXO6-dependent survival pathways. Elife, 2015. 4. |