|
1. Forster, I. C., Hernando, N., Biber, J. &Murer, H. Phosphate transporters of the SLC20 and SLC34 families. Mol. Aspects Med. 34, 386–395 (2013). 2. Bøttger, P. &Pedersen, L. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life. BMC Biochem. 12, 21 (2011). 3. Takase, N. et al. Neuroprotective effect of 5-aminolevulinic acid against low inorganic phosphate in neuroblastoma SH-SY5Y cells. Sci. Rep. 7, 5768 (2017). 4. Samyn, D. R. &Persson, B. L. Yeast Membrane Transport. 892, 253–269 (2016). 5. Dahl, S. G., Sylte, I. &Ravna, A. W. Structures and Models of Transporter Proteins. J. Pharmacol. Exp. Ther. 309, 853–860 (2004). 6. Chung, C.-C., Hwang, S.-P. L. &Chang, J. Identification of a high-affinity phosphate transporter gene in a prasinophyte alga, Tetraselmis chui, and its expression under nutrient limitation. Appl. Environ. Microbiol. 69, 754–759 (2003). 7. Schlessinger, A. et al. Comparison of human solute carriers. Protein Sci. 19, 412–428 (2010). 8. He, L., Vasiliou, K. &Nebert, D. W. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum. Genomics 3, 195 (2009). 9. Schlessinger, A., Yee, S. W., Sali, A. &Giacomini, K. M. SLC classification: An update. Clin. Pharmacol. Ther. 94, 19–23 (2013). 10. Lederer, E. &Miyamoto, K. ichi. Clinical consequences of mutations in sodium phosphate cotransporters. Clin. J. Am. Soc. Nephrol. 7, 1179–1187 (2012). 11. Reimer, R. J. &Edwards, R. H. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch. Eur. J. Physiol. 447, 629–635 (2004). 12. Virkki, L.V., Biber, J., Murer, H. &Forster, I. C. Phosphate transporters: a tale of two solute carrier families. AJP Ren. Physiol. 293, F643–F654 (2007). 13. Kavanaugh, M. P. et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc. Natl. Acad. Sci. 91, 7071–7075 (1994). 14. Salaün, C., Maréchal, V. &Heard, J. M. Transport-deficient Pit2 phosphate transporters still modify cell surface oligomers structure in response to inorganic phosphate. J. Mol. Biol. 340, 39–47 (2004). 15. Salaun, C., Rodrigues, P. &Heard, J. M. Transmembrane topology of PiT-2, a phosphate transporter-retrovirus receptor. J. Virol. 75, 5584–5592 (2001). 16. Bøttger, P. &Pedersen, L. Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related signature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2. FEBS Journal 272, 3060–3074 (2005). 17. Vallier, L. et al. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 4, (2009). 18. García-prat, L. et al. Autophagy maintains stemness by preventing senescence. Nature 529, 37–42 (2016). 19. Hsu, S. C. et al. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification. Neurogenetics 14, 11–22 (2013). 20. Foundation, E. J. Two Highly Conserved Glutamate Residues Critical for Type III Sodium-dependent Phosphate Transport Revealed by Uncoupling Transport Function from Retroviral Receptor Function * □. 277, 42741–42747 (2002). 21. Beck, L. et al. Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J. Biol. Chem. 284, 31363–31374 (2009). 22. Versaw, W. K. A Chloroplast Phosphate Transporter, PHT2;1, Influences Allocation of Phosphate within the Plant and Phosphate-Starvation Responses. Plant Cell Online 14, 1751–1766 (2002). 23. Guo, B. et al. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol. 177, 889–898 (2008). 24. Lin, W. Y., Lin, S. I. &Chiou, T. J. Molecular regulators of phosphate homeostasis in plants. J. Exp. Bot. 60, 1427–1438 (2009). 25. Poirier, Y. &Bucher, M. Phosphate Transport and Homeostasis in Arabidopsis. Arab. B. 1, e0024 (2002). 26. Muchhal, U. S., Pardo, J. M. &Raghothama, K. G. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 93, 10519–23 (1996). 27. Daram, P. et al. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11, 2153–66 (1999). 28. Secco, D., Wang, C., Shou, H. &Whelan, J. Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins. FEBS Lett. 586, 289–295 (2012). 29. Tomar, P. &Sinha, H. Conservation of PHO pathway in ascomycetes and the role of Pho84. J. Biosci. 39, 525–536 (2014). 30. Ghillebert, R., Swinnen, E., De Snijder, P., Smets, B. &Winderickx, J. Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. Biochem. J. 434, 243–251 (2011). 31. Fristedt, U., Weinander, R., Martinsson, H. S. &Persson, B. L. Characterization of purified and unidirectionally reconstituted Pho84 phosphate permease of Saccharomyces cerevisiae. FEBS Lett. 458, 1–5 (1999). 32. Sengottaiyan, P., Ruiz-Pavõn, L. &Persson, B. L. Functional expression, purification and reconstitution of the recombinant phosphate transporter Pho89 of Saccharomyces cerevisiae. FEBS J. 280, 965–975 (2013). 33. Versaw, W. K. A phosphate-repressible, high-affinity phosphate permease is encoded by the pho-5+ gene of Neurospora crassa. Gene 153, 135–139 (1995). 34. Kirk, K. Membrane transport in the malaria-infected erythrocyte. Physiol. Rev. 81, 495–537 (2001). 35. Saliba, K. J. et al. Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite. Nature 443, 582–585 (2006). 36. McCarthy, S. et al. Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile. J. Bacteriol. 196, 3562–3570 (2014). 37. Remonsellez, F., Orell, A. &Jerez, C. A. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: Possible role of polyphosphate metabolism. Microbiology 152, 59–66 (2006). 38. Huang, Y. et al. Structure and Mechanism of the Glycerol-3-Phosphate Transporter from Escherichia coli. 616, (2014). 39. Ambudkar, S.V., Anantharam, V. &Maloney, P. C. UhpT, the sugar phosphate antiporter of Escherichia coli, functions as a monomer. J. Biol. Chem. 265, 12287–12292 (1990). 40. Motomura, K. et al. Overproduction of YjbB reduces the level of polyphosphate in Escherichia coli: A hypothetical role of YjbB in phosphate export and polyphosphate accumulation. FEMS Microbiol. Lett. 320, 25–32 (2011). 41. McCleary, W. R. Molecular Mechanisms of Phosphate Homeostasis in Escherichia coli. Escherichia coli-Recent Adv. Physiol. Pathog. Biotechnol. Appl. InTech (2017). doi:10.5772/67283 42. Schulz, G. E. A new classification of membrane protein crystals. J. Mol. Biol. 407, 640–646 (2011). 43. Hsieh, Y. J. &Wanner, B. L. Global regulation by the seven-component Pisignaling system. Curr. Opin. Microbiol. 13, 198–203 (2010). 44. Mansilla, M. C. &DeMendoza, D. The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146, 815–821 (2000). 45. Nelson, K. E. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999). 46. Huber, R. et al. Microbiology 9. 324–333 (2005). 47. López-Marqués, R. L. et al. Large-scale purification of the proton pumping pyrophosphatase from Thermotoga maritima: A ‘Hot-Solve’ method for isolation of recombinant thermophilic membrane proteins. Biochim. Biophys. Acta - Biomembr. 1716, 69–76 (2005). 48. Pedersen, B. P. et al. Crystal structure of a eukaryotic phosphate transporter. Nature 496, 533–536 (2013). 49. Chien, M. L., Foster, J. L., Douglas, J. L. &Garcia, J.V. The amphotropic murine leukemia virus receptor gene encodes a 71-kilodalton protein that is induced by phosphate depletion. J Virol 71, 4564–4570 (1997). 50. Rath, A., Glibowicka, M., Nadeau, V. G., Chen, G. &Deber, C. M. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc. Natl. Acad. Sci. 106, 1760–1765 (2009). 51. Salaun, C., Gyan, E., Rodrigues, P. &Heard, J. M. Pit2 assemblies at the cell surface are modulated by extracellular inorganic phosphate concentration. J Virol 76, 4304–4311 (2002). 52. Privé, G. G. Detergents for the stabilization and crystallization of membrane proteins. Methods 41, 388–397 (2007). 53. Kragh-Hansen, U., LeMaire, M. &Møller, J.V. The mechanism of detergent solubilization of liposomes and protein- containing membranes. Biophys. J. 75, 2932–2946 (1998). 54. Isambert, M., Henry, J., Gasnier, B. &Sagne, C. To the Purification of the Vesicular Monoamine Transporter. 831, 825–831 (1996). 55. Tulumello, D.V. &Deber, C. M. SDS micelles as a membrane-mimetic environment for transmembrane segments. Biochemistry 48, 12096–12103 (2009). 56. Katebi, A. R. &Jernigan, R. L. The critical role of the loops of triosephosphate isomerase for its oligomerization, dynamics, and functionality. Protein Sci. 23, 213–218 (2014). 57. Walden, H. et al. Tiny TIM: A small, tetrameric, hyperthermostable triosephosphate isomerase. J. Mol. Biol. 306, 745–757 (2001). 58. Delmar, J. A., Bolla, J. R., Su, C. C. &Yu, E. W. Crystallization of membrane proteins by vapor diffusion. Methods in Enzymology 557, (Elsevier Inc., 2015). 59. Newstead, S., Hobbs, J., Jordan, D., Carpenter, E. P. &Iwata, S. Insights into outer membrane protein crystallization. Mol. Membr. Biol. 25, 631–638 (2008). 60. Parker, J. L. &Newstead, S. The Next Generation in Membrane Protein Structure Determination. 922, 61–72 (2016). 61. Parker, J. L. &Newstead, S. Current trends in α-helical membrane protein crystallization: An update. Protein Sci. 21, 1358–1365 (2012). 62. Hutchison, J. M. et al. Dodecyl-β-melibioside Detergent Micelles as a Medium for Membrane Proteins. Biochemistry 56, 5481–5484 (2017). 63. Pedersen, B. P. et al. Crystal structure of a eukaryotic phosphate transporter. Nature 496, 533–536 (2013). 64. Weinstock, J. Inhibitors of sodium-dependent phosphate transport. Journal 81–84 (2004). doi:10.1517/13543776.14.1.81 65. Jono, S. et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 87, E10–E17 (2000). 66. Ravera, S., Virkki, L.V., Murer, H. &Forster, I. C. Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. AJP Cell Physiol. 293, C606–C620 (2007). 67. Sievers, F. &Higgins, D. G. Clustal Omega. Curr. Protoc. Bioinforma. 2014, 3.13.1-3.13.16 (2014). 68. Perrière, G. &Gouy, M. WWW-Query: An on-line retrieval system for biological sequence banks. Biochimie 78, 364–369 (1996). 69. Robert, X. &Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, 320–324 (2014). 70. Krogh, A., Larsson, B., VonHeijne, G. &Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).
|