帳號:guest(18.220.139.144)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪瑞儀
作者(外文):Hong, Ruei-Yi
論文名稱(中文):海棲熱袍菌磷酸轉運膜蛋白的分離、純化與結晶
論文名稱(外文):Isolation, purification and crystallization of Thermotoga maritima phosphate transporter
指導教授(中文):孫玉珠
指導教授(外文):Sun, Yuh-Ju
口試委員(中文):蕭傳鐙
翁秉霖
口試委員(外文):Hsiao, Chwan-Deng
Ong, Ping-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:105080584
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:60
中文關鍵詞:海棲熱袍菌磷酸轉運膜蛋白分離純化結晶
外文關鍵詞:Thermotoga maritimaphosphate transporterPiTIsolationpurificationcrystallization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
磷在生物體中常以磷酸的形式存在,其在生物體中扮演許多重要的角色,
磷酸轉運穿膜蛋白(PiT)能將磷酸運至細胞膜內以維持胞內磷酸的恆定。在溶質運送蛋白(Solute carrier, SLC)家族中, SLC20是一群將磷與鈉協同運輸的磷酸轉運蛋白,其有著高度保留的內部重複序列(GANDVANA/S)且廣泛存在於生物界的細胞中。然而現在仍然缺乏SLC20家族或其同源蛋白的分子結構來解釋SLC20在磷酸轉運和一些疾病中的機制。海棲熱袍菌(Thermotoga maritima)的磷酸轉運膜蛋白(TmPiT)具有高度保留的內部重複序列,且與原核和真核生物的磷酸轉運膜蛋白都有高度的相似性。它在本研究中被用來作為探討磷酸轉運膜蛋白分子結構和功能。我們成功的分離出在酵母菌(Saccharomyces cerevisiae)上異種表達的TmPiT蛋白。並藉由加入其受質磷酸和調整熱解法中的溫度去改善TmPiT的純度,這麼做能穩定TmPiT並降低多聚體的形成。為了得到更高品質的晶體,不同的介面活性劑 (detergent) 被應用在TmPiT的溶解和結晶中,從結果上來看,TmPiT被鑲嵌在較大膠束大小(micelle size) 的介面活性劑上能獲得更高解析度 (3.7 Å) 但在空間晶格中較低對稱性 (C2 space group) 的晶體。然而就目前而言晶體仍需改進以獲得更好的X-ray繞射資料,並需進一步的去解出其相位問題。
Living cells require inorganic phosphate (Pi) as a critical material for many biology functions. Inorganic phosphate transporters (PiT) are a kind of membrane protein that can transport Pi across the membrane to maintain phosphate homeostasis. In the all of solute carrier (SLC) family, PiT belongs to the SLC20 that are Na+-coupled Pi cotransporter. It has a conserved internal repeat sequence, GANDVANA/S, and exists in all kingdom cells. However, it still lacks molecular structure of SLC20 or their prokaryotic homologs to explain its certain function role in Pi transport and some diseases. The PiT from Thermotoga maritima (TmPiT) also has conserved internal repeat sequence and shares high identity with prokaryotic and eukaryotic PiT. It is utilized to study structure and function of PiT in this research. We have successfully isolated TmPiT protein which was heterologously expressed in Saccharomyces cerevisiae. The purity of TmPiT was improved by adding its substrate (Pi) and adjust the heating temperature in the Hot-Solve method which can stabilize TmPiT and decrease the oligomer formation. To get a higher quality crystal, different detergents were applied in solubilization and crystallization of TmPiT. The results showed TmPiT embedded in larger micelle size detergent could form the higher resolution (3.7Å) but lower symmetry (C2 space group) crystal. But for now, the quality of X-ray diffraction dataset still needs to be improved, and the phase problem need to be determined.
Contents
Abstract I
中文摘要 II
誌謝 III
Chapter 1 Introduction 1
1.1 Phosphate 1
1.2 Phosphate transporter 2
1.2.1 SLC34 family (type II Na+ -coupled Pi transporters) 3
1.2.2 SLC20 family (type III Na+ -coupled Pi transporters) 4
1.2.3 PiT family 5
1.3 Phosphate transporter in mammal 5
1.4 Phosphate transporter in plant and fungi 6
1.5 Phosphate transporter in protist and archaea 8
1.6 Phosphate transporter in bacteria 8
1.7 Phosphate transporter in Thermotoga maritima 9
Chapter 2 Material and Methods 11
2.1 TmPiT transformation 11
2.2 TmPiT expression 12
2.2 Isolation of S. cerevisiae microsome 12
2.3 Microsome concentration quantification 13
2.4 .1 Protein isolation with Hot-Solve method 14
2.4.2 Protein purification with nickel column 14
2.4.3 Protein purification with size-exclusion column 15
2.5 SDS-PAGE 15
2.6 Western blotting analysis 16
Chapter 3 Result 18
3.1 Sequence analysis and topology of TmPiT 18
3.2 TmPiT expression 20
3.2.1 TmPiT isolation 21
3.2.2 TmPiT purification improvement 22
3.3 Different detergent application in TmPiT 24
3.3.1 DDM embedded the TmPiT 25
3.3.2 DM embedded the TmPiT 26
3.3.3 DDMB embedded the TmPiT 26
3.3.4 Cymal-7, OG and NM embedded the TmPiT 27
3.4 TmPiT crystallization in different detergent 28
3.4.1 TmPiT crystallization in DDM 28
3.4.2 TmPiT crystallization in DM 29
3.4.3 TmPiT crystallization in DDMB 30
3.4.4 TmPiT crystallization in Cymal-7 31
Chapter 4 Conclusion 32
Figure and Table 33

1. Forster, I. C., Hernando, N., Biber, J. &Murer, H. Phosphate transporters of the SLC20 and SLC34 families. Mol. Aspects Med. 34, 386–395 (2013).
2. Bøttger, P. &Pedersen, L. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life. BMC Biochem. 12, 21 (2011).
3. Takase, N. et al. Neuroprotective effect of 5-aminolevulinic acid against low inorganic phosphate in neuroblastoma SH-SY5Y cells. Sci. Rep. 7, 5768 (2017).
4. Samyn, D. R. &Persson, B. L. Yeast Membrane Transport. 892, 253–269 (2016).
5. Dahl, S. G., Sylte, I. &Ravna, A. W. Structures and Models of Transporter Proteins. J. Pharmacol. Exp. Ther. 309, 853–860 (2004).
6. Chung, C.-C., Hwang, S.-P. L. &Chang, J. Identification of a high-affinity phosphate transporter gene in a prasinophyte alga, Tetraselmis chui, and its expression under nutrient limitation. Appl. Environ. Microbiol. 69, 754–759 (2003).
7. Schlessinger, A. et al. Comparison of human solute carriers. Protein Sci. 19, 412–428 (2010).
8. He, L., Vasiliou, K. &Nebert, D. W. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum. Genomics 3, 195 (2009).
9. Schlessinger, A., Yee, S. W., Sali, A. &Giacomini, K. M. SLC classification: An update. Clin. Pharmacol. Ther. 94, 19–23 (2013).
10. Lederer, E. &Miyamoto, K. ichi. Clinical consequences of mutations in sodium phosphate cotransporters. Clin. J. Am. Soc. Nephrol. 7, 1179–1187 (2012).
11. Reimer, R. J. &Edwards, R. H. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch. Eur. J. Physiol. 447, 629–635 (2004).
12. Virkki, L.V., Biber, J., Murer, H. &Forster, I. C. Phosphate transporters: a tale of two solute carrier families. AJP Ren. Physiol. 293, F643–F654 (2007).
13. Kavanaugh, M. P. et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc. Natl. Acad. Sci. 91, 7071–7075 (1994).
14. Salaün, C., Maréchal, V. &Heard, J. M. Transport-deficient Pit2 phosphate transporters still modify cell surface oligomers structure in response to inorganic phosphate. J. Mol. Biol. 340, 39–47 (2004).
15. Salaun, C., Rodrigues, P. &Heard, J. M. Transmembrane topology of PiT-2, a phosphate transporter-retrovirus receptor. J. Virol. 75, 5584–5592 (2001).
16. Bøttger, P. &Pedersen, L. Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related signature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2. FEBS Journal 272, 3060–3074 (2005).
17. Vallier, L. et al. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 4, (2009).
18. García-prat, L. et al. Autophagy maintains stemness by preventing senescence. Nature 529, 37–42 (2016).
19. Hsu, S. C. et al. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification. Neurogenetics 14, 11–22 (2013).
20. Foundation, E. J. Two Highly Conserved Glutamate Residues Critical for Type III Sodium-dependent Phosphate Transport Revealed by Uncoupling Transport Function from Retroviral Receptor Function * □. 277, 42741–42747 (2002).
21. Beck, L. et al. Identification of a novel function of PiT1 critical for cell proliferation and independent of its phosphate transport activity. J. Biol. Chem. 284, 31363–31374 (2009).
22. Versaw, W. K. A Chloroplast Phosphate Transporter, PHT2;1, Influences Allocation of Phosphate within the Plant and Phosphate-Starvation Responses. Plant Cell Online 14, 1751–1766 (2002).
23. Guo, B. et al. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporters. New Phytol. 177, 889–898 (2008).
24. Lin, W. Y., Lin, S. I. &Chiou, T. J. Molecular regulators of phosphate homeostasis in plants. J. Exp. Bot. 60, 1427–1438 (2009).
25. Poirier, Y. &Bucher, M. Phosphate Transport and Homeostasis in Arabidopsis. Arab. B. 1, e0024 (2002).
26. Muchhal, U. S., Pardo, J. M. &Raghothama, K. G. Phosphate transporters from the higher plant Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 93, 10519–23 (1996).
27. Daram, P. et al. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell 11, 2153–66 (1999).
28. Secco, D., Wang, C., Shou, H. &Whelan, J. Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins. FEBS Lett. 586, 289–295 (2012).
29. Tomar, P. &Sinha, H. Conservation of PHO pathway in ascomycetes and the role of Pho84. J. Biosci. 39, 525–536 (2014).
30. Ghillebert, R., Swinnen, E., De Snijder, P., Smets, B. &Winderickx, J. Differential roles for the low-affinity phosphate transporters Pho87 and Pho90 in Saccharomyces cerevisiae. Biochem. J. 434, 243–251 (2011).
31. Fristedt, U., Weinander, R., Martinsson, H. S. &Persson, B. L. Characterization of purified and unidirectionally reconstituted Pho84 phosphate permease of Saccharomyces cerevisiae. FEBS Lett. 458, 1–5 (1999).
32. Sengottaiyan, P., Ruiz-Pavõn, L. &Persson, B. L. Functional expression, purification and reconstitution of the recombinant phosphate transporter Pho89 of Saccharomyces cerevisiae. FEBS J. 280, 965–975 (2013).
33. Versaw, W. K. A phosphate-repressible, high-affinity phosphate permease is encoded by the pho-5+ gene of Neurospora crassa. Gene 153, 135–139 (1995).
34. Kirk, K. Membrane transport in the malaria-infected erythrocyte. Physiol. Rev. 81, 495–537 (2001).
35. Saliba, K. J. et al. Sodium-dependent uptake of inorganic phosphate by the intracellular malaria parasite. Nature 443, 582–585 (2006).
36. McCarthy, S. et al. Role of an archaeal PitA transporter in the copper and arsenic resistance of Metallosphaera sedula, an extreme thermoacidophile. J. Bacteriol. 196, 3562–3570 (2014).
37. Remonsellez, F., Orell, A. &Jerez, C. A. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: Possible role of polyphosphate metabolism. Microbiology 152, 59–66 (2006).
38. Huang, Y. et al. Structure and Mechanism of the Glycerol-3-Phosphate Transporter from Escherichia coli. 616, (2014).
39. Ambudkar, S.V., Anantharam, V. &Maloney, P. C. UhpT, the sugar phosphate antiporter of Escherichia coli, functions as a monomer. J. Biol. Chem. 265, 12287–12292 (1990).
40. Motomura, K. et al. Overproduction of YjbB reduces the level of polyphosphate in Escherichia coli: A hypothetical role of YjbB in phosphate export and polyphosphate accumulation. FEMS Microbiol. Lett. 320, 25–32 (2011).
41. McCleary, W. R. Molecular Mechanisms of Phosphate Homeostasis in Escherichia coli. Escherichia coli-Recent Adv. Physiol. Pathog. Biotechnol. Appl. InTech (2017). doi:10.5772/67283
42. Schulz, G. E. A new classification of membrane protein crystals. J. Mol. Biol. 407, 640–646 (2011).
43. Hsieh, Y. J. &Wanner, B. L. Global regulation by the seven-component Pisignaling system. Curr. Opin. Microbiol. 13, 198–203 (2010).
44. Mansilla, M. C. &DeMendoza, D. The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146, 815–821 (2000).
45. Nelson, K. E. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).
46. Huber, R. et al. Microbiology 9. 324–333 (2005).
47. López-Marqués, R. L. et al. Large-scale purification of the proton pumping pyrophosphatase from Thermotoga maritima: A ‘Hot-Solve’ method for isolation of recombinant thermophilic membrane proteins. Biochim. Biophys. Acta - Biomembr. 1716, 69–76 (2005).
48. Pedersen, B. P. et al. Crystal structure of a eukaryotic phosphate transporter. Nature 496, 533–536 (2013).
49. Chien, M. L., Foster, J. L., Douglas, J. L. &Garcia, J.V. The amphotropic murine leukemia virus receptor gene encodes a 71-kilodalton protein that is induced by phosphate depletion. J Virol 71, 4564–4570 (1997).
50. Rath, A., Glibowicka, M., Nadeau, V. G., Chen, G. &Deber, C. M. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc. Natl. Acad. Sci. 106, 1760–1765 (2009).
51. Salaun, C., Gyan, E., Rodrigues, P. &Heard, J. M. Pit2 assemblies at the cell surface are modulated by extracellular inorganic phosphate concentration. J Virol 76, 4304–4311 (2002).
52. Privé, G. G. Detergents for the stabilization and crystallization of membrane proteins. Methods 41, 388–397 (2007).
53. Kragh-Hansen, U., LeMaire, M. &Møller, J.V. The mechanism of detergent solubilization of liposomes and protein- containing membranes. Biophys. J. 75, 2932–2946 (1998).
54. Isambert, M., Henry, J., Gasnier, B. &Sagne, C. To the Purification of the Vesicular Monoamine Transporter. 831, 825–831 (1996).
55. Tulumello, D.V. &Deber, C. M. SDS micelles as a membrane-mimetic environment for transmembrane segments. Biochemistry 48, 12096–12103 (2009).
56. Katebi, A. R. &Jernigan, R. L. The critical role of the loops of triosephosphate isomerase for its oligomerization, dynamics, and functionality. Protein Sci. 23, 213–218 (2014).
57. Walden, H. et al. Tiny TIM: A small, tetrameric, hyperthermostable triosephosphate isomerase. J. Mol. Biol. 306, 745–757 (2001).
58. Delmar, J. A., Bolla, J. R., Su, C. C. &Yu, E. W. Crystallization of membrane proteins by vapor diffusion. Methods in Enzymology 557, (Elsevier Inc., 2015).
59. Newstead, S., Hobbs, J., Jordan, D., Carpenter, E. P. &Iwata, S. Insights into outer membrane protein crystallization. Mol. Membr. Biol. 25, 631–638 (2008).
60. Parker, J. L. &Newstead, S. The Next Generation in Membrane Protein Structure Determination. 922, 61–72 (2016).
61. Parker, J. L. &Newstead, S. Current trends in α-helical membrane protein crystallization: An update. Protein Sci. 21, 1358–1365 (2012).
62. Hutchison, J. M. et al. Dodecyl-β-melibioside Detergent Micelles as a Medium for Membrane Proteins. Biochemistry 56, 5481–5484 (2017).
63. Pedersen, B. P. et al. Crystal structure of a eukaryotic phosphate transporter. Nature 496, 533–536 (2013).
64. Weinstock, J. Inhibitors of sodium-dependent phosphate transport. Journal 81–84 (2004). doi:10.1517/13543776.14.1.81
65. Jono, S. et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 87, E10–E17 (2000).
66. Ravera, S., Virkki, L.V., Murer, H. &Forster, I. C. Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. AJP Cell Physiol. 293, C606–C620 (2007).
67. Sievers, F. &Higgins, D. G. Clustal Omega. Curr. Protoc. Bioinforma. 2014, 3.13.1-3.13.16 (2014).
68. Perrière, G. &Gouy, M. WWW-Query: An on-line retrieval system for biological sequence banks. Biochimie 78, 364–369 (1996).
69. Robert, X. &Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, 320–324 (2014).
70. Krogh, A., Larsson, B., VonHeijne, G. &Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).


(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *