帳號:guest(3.144.34.110)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張博淵
作者(外文):Chang, Po-Yuan
論文名稱(中文):Transglutaminase-2 是斑馬魚心臟再生期間 細胞外基質重塑的調節因子
論文名稱(外文):Transglutaminase-2 is a regulator of extracellular matrix remodeling during zebrafish heart regeneration
指導教授(中文):莊永仁
指導教授(外文):Chuang, Yung-Jen
口試委員(中文):吳長益
劉薏雯
口試委員(外文):Wu, Chang-Yi
Liu, Yi-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:105080581
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:39
中文關鍵詞:心肌梗塞心臟纖維化心臟再生斑馬魚細胞外基質轉麩醯胺酸酶-2
外文關鍵詞:Myocardial infarctionCardiac fibrosisHeart regenerationZebrafishExtracellular matrixTransglutaminase-2
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在人體中,急性心臟損傷 - 例如心肌梗塞後的修復,涉及一系列複雜的組織重塑機制,使得纖維化疤痕會取代受損的心臟組織,進而影響心臟的收縮功能,並可能因此導致心臟衰竭而死亡。
相較於哺乳類動物,斑馬魚的心臟在受到嚴重損傷後可以進行完善的再生且不留疤痕。 這意味著我們能透過從斑馬魚心臟再生期間的調節機制中學習,並找出解決人類心臟纖維化的可能性。
先前的研究顯示在轉基因脊椎動物的心肌細胞,特異性過度表達transglutaminase-2時,可誘導其心室重構。因此,在本研究我們假設Tgm2可能是斑馬魚心臟再生過程中細胞外基質(ECM)重塑的關鍵調節因子。為了驗證這個假設,首先我們利用斑馬魚心臟創傷微陣列進行數據分析。我們發現tgm2b的基因表達,在成年斑馬魚心臟凍傷後顯著上調。我們接下來證實了冷凍損傷後,斑馬魚心肌Tgm2的酵素活性會相應的增加。為了探討Tgm2功能喪失的影響,我們使用TGM2抑制劑ERW1041E,來抑制心臟損傷後的斑馬魚Tgm2的酵素活性。AFOG染色顯示當Tgm2活性受到抑制時,傷口區域的膠原蛋白沉積減少。我們還發現col1a1a和tgfb1a的基因表達,會因為Tgm2活性受到抑制而共同降低。此外,Tgm2活性的喪失可能影響纖連蛋白的蛋白質表達。綜合實驗結果,Tgm2可能在斑馬魚心臟再生期間調節ECM蛋白的產生,因此Tgm2與其調控機制可能有潛力做為治療心臟纖維化的藥物標的。
In human, damage repair after acute cardiac injury involves a series of complex tissue remodeling events to replace damaged tissue with a fibrotic scar. In contrast, zebrafish heart can undertake complete regeneration after severe injury. This implies the possibility of resolving human cardiac fibrosis by learning from the regulatory mechanisms during zebrafish heart regeneration.
Previous studies have shown that cardiomyocyte-specific overexpression of transglutaminase-2 (TGM2) will induce ventricular remodeling in transgenic vertebrates. Therefore, this study hypothesized that Tgm2 may be a critical regulator of extracellular matrix (ECM) remodeling during zebrafish heart regeneration. To investigate this hypothesis, we performed data mining by microarray analysis. We found that tgm2b gene expression was significantly up-regulated after cardiac cryoinjury in adult zebrafish. We next verified that Tgm2’s enzymatic activity increased accordingly after cryoinjury. To study the loss-of-function effect, we used a potent TGM2 inhibitor ERW1041E to treat the zebrafish after cardiac injury. AFOG staining showed that the deposition of collagen in the wounded region was reduced when Tgm2 activity was inhibited. We also found that the expression levels of col1a1a and tgfb1a would decrease collectively by Tgm2 inhibition. Moreover, loss of Tgm2 activity might affect the protein expression of fibronectin. In conclusion, Tgm2 could regulate the production of ECM proteins during zebrafish heart regeneration, consequently, Tgm2 and its regulatory mechanism might be a therapeutic target for cardiac fibrosis.
中文摘要------------------------------------------------ i
Abstract----------------------------------------------- ii
致謝--------------------------------------------------- iii
Table of Contents-------------------------------------- iv
Abbreviations------------------------------------------ vi
1. Introduction------------------------------------------------ 1
1.1 Cardiovascular disease------------------------------------- 1
1.2 The advantages of zebrafish model for cardiac tissue repair research------------------------------------------------------- 1
1.2.1 Zebrafish as a model for cardiovascular diseases--------- 1
1.2.2 Heart regeneration in zebrafish-------------------------- 2
1.2.3 Cardiac injury model in zebrafish------------------------ 3
1.2.4 Staging of the zebrafish cardiac remodeling process------ 3
1.3 Extracellular matrix remodeling dynamics------------------- 4
1.4 Transglutaminase-2 and heart disease----------------------- 5
1.5 The specific aim of this study----------------------------- 6
2. Material and Methods---------------------------------------- 7
2.1 Zebrafish husbandry---------------------------------------- 7
2.2 Zebrafish anesthetization and ventricular cryoinjury------- 7
2.3 Transglutaminase activity assay---------------------------- 8
2.4 Transglutaminase 2 inhibitor------------------------------- 8
2.5 Rna isolation and real-time quantitative pcr analysis------ 9
2.6 Afog staining---------------------------------------------- 9
2.7 Immunofluorescence staining-------------------------------- 10
3. Results----------------------------------------------------- 11
3.1 The tgm2b gene expression and transglutaminase (tgm) activity profile after cryoinjury--------------------------------------- 11
3.1.1 The injury-induced tgm2b gene expression in zebrafish heart ----------------------------------------------------------------11
3.1.2 Upregulation of transglutaminase activity in zebrafish heart at 3dpci------------------------------------------------------- 12
3.1.3 tgm2 expression patterns after cryoinjury in the adult zebrafish heart------------------------------------------------ 13
3.2 ERW1041E is a potent inhibitor of transglutaminase-2 activity in zebrafish.-------------------------------------------------- 13
3.3 Transglutaminase-2 activity was required for collagen formation during zebrafish heart regeneration.----------------- 14
3.4 Transglutaminase 2 activity was required for the production of fibronectin during zebrafish heart regeneration---------------- 15
3.5 The correlation between tgm2 enzymatic activity and the known heart regeneration signaling pathways-------------------------- 16
4. Conclusion and Discussion----------------------------------- 18
4.1 Proposal model for the role of tgm2 in zebrafish heart repair after cryoinjury----------------------------------------------- 18
4.2 Lessons from zebrafish heart generation may help to accelerate tissue remodeling in human heart disease patients-------------- 19
4.3 Characterization of syndecan-4 and transglutaminase-2 in adult zebrafish heart regeneration.---------------------------------- 20
5. Reference--------------------------------------------------- 22





1. Matsui, Y., J. Morimoto, and T. Uede, Role of matricellular proteins in cardiac tissue remodeling after myocardial infarction. World J Biol Chem, 2010. 1(5): p. 69-80.
2. Pfeffer, M.A. and E. Braunwald, Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 1990. 81(4): p. 1161-72.
3. Lieschke, G.J. and P.D. Currie, Animal models of human disease: zebrafish swim into view. Nat Rev Genet, 2007. 8(5): p. 353-67.
4. Cahill, T.J., R.P. Choudhury, and P.R. Riley, Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov, 2017. 16(10): p. 699-717.
5. McGrath, P. and C.Q. Li, Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today, 2008. 13(9-10): p. 394-401.
6. Huang, C.C., et al., Zebrafish heart failure models for the evaluation of chemical probes and drugs. Assay Drug Dev Technol, 2013. 11(9-10): p. 561-72.
7. Bakkers, J., Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res, 2011. 91(2): p. 279-88.
8. Godwin, J., The promise of perfect adult tissue repair and regeneration in mammals: Learning from regenerative amphibians and fish. Bioessays, 2014. 36(9): p. 861-71.
9. Tzahor, E. and K.D. Poss, Cardiac regeneration strategies: Staying young at heart. Science, 2017. 356(6342): p. 1035-1039.
10. Sahara, M., F. Santoro, and K.R. Chien, Programming and reprogramming a human heart cell. EMBO J, 2015. 34(6): p. 710-38.
11. Jazwinska, A. and P. Sallin, Regeneration versus scarring in vertebrate appendages and heart. J Pathol, 2016. 238(2): p. 233-46.
12. Chablais, F., et al., The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol, 2011. 11: p. 21.
13. Zlatanova, I., C. Pinto, and J.S. Silvestre, Immune Modulation of Cardiac Repair and Regeneration: The Art of Mending Broken Hearts. Front Cardiovasc Med, 2016. 3: p. 40.
14. Torr, E.E., et al., Myofibroblasts exhibit enhanced fibronectin assembly that is intrinsic to their contractile phenotype. J Biol Chem, 2015. 290(11): p. 6951-61.
15. Jopling, C., et al., Hypoxia induces myocardial regeneration in zebrafish. Circulation, 2012. 126(25): p. 3017-27.
16. Chablais, F. and A. Jazwinska, The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling. Development, 2012. 139(11): p. 1921-30.
17. Bonnans, C., J. Chou, and Z. Werb, Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol, 2014. 15(12): p. 786-801.
18. Awada, H.K., M.P. Hwang, and Y. Wang, Towards comprehensive cardiac repair and regeneration after myocardial infarction: Aspects to consider and proteins to deliver. Biomaterials, 2016. 82: p. 94-112.
19. Mercer, S.E., S.J. Odelberg, and H.G. Simon, A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Dev Biol, 2013. 382(2): p. 457-69.
20. Bujak, M. and N.G. Frangogiannis, The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res, 2007. 74(2): p. 184-95.
21. Desmouliere, A., et al., Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol, 1993. 122(1): p. 103-11.
22. Schiller, M., D. Javelaud, and A. Mauviel, TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci, 2004. 35(2): p. 83-92.
23. Godwin, J., D. Kuraitis, and N. Rosenthal, Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int J Biochem Cell Biol, 2014. 56: p. 47-55.
24. Belkin, A.M., Extracellular TG2: emerging functions and regulation. FEBS J, 2011. 278(24): p. 4704-16.
25. Aeschlimann, D., et al., Expression of tissue transglutaminase in skeletal tissues correlates with events of terminal differentiation of chondrocytes. J Cell Biol, 1993. 120(6): p. 1461-70.
26. Gaudry, C.A., et al., Tissue transglutaminase is an important player at the surface of human endothelial cells: evidence for its externalization and its colocalization with the beta(1) integrin. Exp Cell Res, 1999. 252(1): p. 104-13.
27. Klock, C., T.R. Diraimondo, and C. Khosla, Role of transglutaminase 2 in celiac disease pathogenesis. Semin Immunopathol, 2012. 34(4): p. 513-22.
28. Aeschlimann, D. and V. Thomazy, Protein crosslinking in assembly and remodelling of extracellular matrices: the role of transglutaminases. Connect Tissue Res, 2000. 41(1): p. 1-27.
29. Siegel, M., et al., Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One, 2008. 3(3): p. e1861.
30. Thomazy, V. and L. Fesus, Differential expression of tissue transglutaminase in human cells. An immunohistochemical study. Cell Tissue Res, 1989. 255(1): p. 215-24.
31. Sane, D.C., J.L. Kontos, and C.S. Greenberg, Roles of transglutaminases in cardiac and vascular diseases. Front Biosci, 2007. 12: p. 2530-45.
32. Small, K., et al., Cardiac specific overexpression of transglutaminase II (G(h)) results in a unique hypertrophy phenotype independent of phospholipase C activation. J Biol Chem, 1999. 274(30): p. 21291-6.
33. Penumatsa, K.C., et al., Transglutaminase 2 in pulmonary and cardiac tissue remodeling in experimental pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 2017. 313(5): p. L752-L762.
34. Huang, W.C., et al., Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish, 2010. 7(3): p. 297-304.
35. Poss, K.D., L.G. Wilson, and M.T. Keating, Heart regeneration in zebrafish. Science, 2002. 298(5601): p. 2188-90.
36. Liu, F.Y., et al., Uncovering the regeneration strategies of zebrafish organs: a comprehensive systems biology study on heart, cerebellum, fin, and retina regeneration. BMC Syst Biol, 2018. 12(Suppl 2): p. 29.
37. Rodius, S., et al., Analysis of the dynamic co-expression network of heart regeneration in the zebrafish. Sci Rep, 2016. 6: p. 26822.
38. Dafik, L., et al., Activation and inhibition of transglutaminase 2 in mice. PLoS One, 2012. 7(2): p. e30642.
39. Deasey, S., et al., Characterization of the transglutaminase gene family in zebrafish and in vivo analysis of transglutaminase-dependent bone mineralization. Amino Acids, 2012. 42(2-3): p. 1065-75.
40. Wang, J., et al., Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol, 2013. 382(2): p. 427-35.
41. Matsumoto, Y., I.K. Park, and K. Kohyama, Matrix metalloproteinase (MMP)-9, but not MMP-2, is involved in the development and progression of C protein-induced myocarditis and subsequent dilated cardiomyopathy. J Immunol, 2009. 183(7): p. 4773-81.
42. Hwang, K.C., et al., Alpha 1-adrenergic receptor coupling with Gh in the failing human heart. Circulation, 1996. 94(4): p. 718-26.
43. Burhan, I., et al., Interplay between transglutaminases and heparan sulphate in progressive renal scarring. Sci Rep, 2016. 6: p. 31343.
44. Scarpellini, A., et al., Syndecan-4 knockout leads to reduced extracellular transglutaminase-2 and protects against tubulointerstitial fibrosis. J Am Soc Nephrol, 2014. 25(5): p. 1013-27.
45. Alberts, B., et al., The extracellular matrix of animals. 2002.



 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *