|
1. Matsui, Y., J. Morimoto, and T. Uede, Role of matricellular proteins in cardiac tissue remodeling after myocardial infarction. World J Biol Chem, 2010. 1(5): p. 69-80. 2. Pfeffer, M.A. and E. Braunwald, Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation, 1990. 81(4): p. 1161-72. 3. Lieschke, G.J. and P.D. Currie, Animal models of human disease: zebrafish swim into view. Nat Rev Genet, 2007. 8(5): p. 353-67. 4. Cahill, T.J., R.P. Choudhury, and P.R. Riley, Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics. Nat Rev Drug Discov, 2017. 16(10): p. 699-717. 5. McGrath, P. and C.Q. Li, Zebrafish: a predictive model for assessing drug-induced toxicity. Drug Discov Today, 2008. 13(9-10): p. 394-401. 6. Huang, C.C., et al., Zebrafish heart failure models for the evaluation of chemical probes and drugs. Assay Drug Dev Technol, 2013. 11(9-10): p. 561-72. 7. Bakkers, J., Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res, 2011. 91(2): p. 279-88. 8. Godwin, J., The promise of perfect adult tissue repair and regeneration in mammals: Learning from regenerative amphibians and fish. Bioessays, 2014. 36(9): p. 861-71. 9. Tzahor, E. and K.D. Poss, Cardiac regeneration strategies: Staying young at heart. Science, 2017. 356(6342): p. 1035-1039. 10. Sahara, M., F. Santoro, and K.R. Chien, Programming and reprogramming a human heart cell. EMBO J, 2015. 34(6): p. 710-38. 11. Jazwinska, A. and P. Sallin, Regeneration versus scarring in vertebrate appendages and heart. J Pathol, 2016. 238(2): p. 233-46. 12. Chablais, F., et al., The zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev Biol, 2011. 11: p. 21. 13. Zlatanova, I., C. Pinto, and J.S. Silvestre, Immune Modulation of Cardiac Repair and Regeneration: The Art of Mending Broken Hearts. Front Cardiovasc Med, 2016. 3: p. 40. 14. Torr, E.E., et al., Myofibroblasts exhibit enhanced fibronectin assembly that is intrinsic to their contractile phenotype. J Biol Chem, 2015. 290(11): p. 6951-61. 15. Jopling, C., et al., Hypoxia induces myocardial regeneration in zebrafish. Circulation, 2012. 126(25): p. 3017-27. 16. Chablais, F. and A. Jazwinska, The regenerative capacity of the zebrafish heart is dependent on TGFbeta signaling. Development, 2012. 139(11): p. 1921-30. 17. Bonnans, C., J. Chou, and Z. Werb, Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol, 2014. 15(12): p. 786-801. 18. Awada, H.K., M.P. Hwang, and Y. Wang, Towards comprehensive cardiac repair and regeneration after myocardial infarction: Aspects to consider and proteins to deliver. Biomaterials, 2016. 82: p. 94-112. 19. Mercer, S.E., S.J. Odelberg, and H.G. Simon, A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Dev Biol, 2013. 382(2): p. 457-69. 20. Bujak, M. and N.G. Frangogiannis, The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res, 2007. 74(2): p. 184-95. 21. Desmouliere, A., et al., Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol, 1993. 122(1): p. 103-11. 22. Schiller, M., D. Javelaud, and A. Mauviel, TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci, 2004. 35(2): p. 83-92. 23. Godwin, J., D. Kuraitis, and N. Rosenthal, Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates. Int J Biochem Cell Biol, 2014. 56: p. 47-55. 24. Belkin, A.M., Extracellular TG2: emerging functions and regulation. FEBS J, 2011. 278(24): p. 4704-16. 25. Aeschlimann, D., et al., Expression of tissue transglutaminase in skeletal tissues correlates with events of terminal differentiation of chondrocytes. J Cell Biol, 1993. 120(6): p. 1461-70. 26. Gaudry, C.A., et al., Tissue transglutaminase is an important player at the surface of human endothelial cells: evidence for its externalization and its colocalization with the beta(1) integrin. Exp Cell Res, 1999. 252(1): p. 104-13. 27. Klock, C., T.R. Diraimondo, and C. Khosla, Role of transglutaminase 2 in celiac disease pathogenesis. Semin Immunopathol, 2012. 34(4): p. 513-22. 28. Aeschlimann, D. and V. Thomazy, Protein crosslinking in assembly and remodelling of extracellular matrices: the role of transglutaminases. Connect Tissue Res, 2000. 41(1): p. 1-27. 29. Siegel, M., et al., Extracellular transglutaminase 2 is catalytically inactive, but is transiently activated upon tissue injury. PLoS One, 2008. 3(3): p. e1861. 30. Thomazy, V. and L. Fesus, Differential expression of tissue transglutaminase in human cells. An immunohistochemical study. Cell Tissue Res, 1989. 255(1): p. 215-24. 31. Sane, D.C., J.L. Kontos, and C.S. Greenberg, Roles of transglutaminases in cardiac and vascular diseases. Front Biosci, 2007. 12: p. 2530-45. 32. Small, K., et al., Cardiac specific overexpression of transglutaminase II (G(h)) results in a unique hypertrophy phenotype independent of phospholipase C activation. J Biol Chem, 1999. 274(30): p. 21291-6. 33. Penumatsa, K.C., et al., Transglutaminase 2 in pulmonary and cardiac tissue remodeling in experimental pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 2017. 313(5): p. L752-L762. 34. Huang, W.C., et al., Combined use of MS-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish, 2010. 7(3): p. 297-304. 35. Poss, K.D., L.G. Wilson, and M.T. Keating, Heart regeneration in zebrafish. Science, 2002. 298(5601): p. 2188-90. 36. Liu, F.Y., et al., Uncovering the regeneration strategies of zebrafish organs: a comprehensive systems biology study on heart, cerebellum, fin, and retina regeneration. BMC Syst Biol, 2018. 12(Suppl 2): p. 29. 37. Rodius, S., et al., Analysis of the dynamic co-expression network of heart regeneration in the zebrafish. Sci Rep, 2016. 6: p. 26822. 38. Dafik, L., et al., Activation and inhibition of transglutaminase 2 in mice. PLoS One, 2012. 7(2): p. e30642. 39. Deasey, S., et al., Characterization of the transglutaminase gene family in zebrafish and in vivo analysis of transglutaminase-dependent bone mineralization. Amino Acids, 2012. 42(2-3): p. 1065-75. 40. Wang, J., et al., Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol, 2013. 382(2): p. 427-35. 41. Matsumoto, Y., I.K. Park, and K. Kohyama, Matrix metalloproteinase (MMP)-9, but not MMP-2, is involved in the development and progression of C protein-induced myocarditis and subsequent dilated cardiomyopathy. J Immunol, 2009. 183(7): p. 4773-81. 42. Hwang, K.C., et al., Alpha 1-adrenergic receptor coupling with Gh in the failing human heart. Circulation, 1996. 94(4): p. 718-26. 43. Burhan, I., et al., Interplay between transglutaminases and heparan sulphate in progressive renal scarring. Sci Rep, 2016. 6: p. 31343. 44. Scarpellini, A., et al., Syndecan-4 knockout leads to reduced extracellular transglutaminase-2 and protects against tubulointerstitial fibrosis. J Am Soc Nephrol, 2014. 25(5): p. 1013-27. 45. Alberts, B., et al., The extracellular matrix of animals. 2002.
|