帳號:guest(13.58.193.140)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林芳瑜
作者(外文):Lin, Fang-Yu
論文名稱(中文):纖維母細胞生長因子第一型調節Nesfatin/催產素的飽足感途徑
論文名稱(外文):FGF1 mediates nesfatin/oxytocin-related satiety pathway
指導教授(中文):邱英明
汪宏達
指導教授(外文):Chiu, Ing-Ming
Wang, Horng-Dar
口試委員(中文):許益超
陳盈潔
口試委員(外文):Hsu, Yi-Chao
Chen, Ying-Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:105080576
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:62
中文關鍵詞:纖維母細胞生長因子肥胖調控食慾調控Nesfatin催產素腦室投藥
外文關鍵詞:FGFObesityFood intake regulationNesfatinOxytocinICV injection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:181
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
纖維母細胞生長因子第一型 (Fibroblast growth factor 1, FGF1)在生物體內扮演著重要的角色,如神經發育與成熟、突觸生長、腫瘤形成和傷口癒合。同時,FGF1也是神經營養因子,在成體腦細胞中廣泛表現。此外,FGF1基因同型合子 (Homozygous)缺陷的小鼠在高油脂飲食下,會產生肥胖、高血壓與糖尿病等症狀,意味著FGF1在代謝平衡中扮演著很重要的角色。然而,FGF1在腦中調控代謝平衡的機制尚未釐清。
我們利用實驗室的客製化FGF1抗體染小鼠腦片,發現FGF1表現在室旁核 (Paraventricular nucleus, PVN),並且,這些表現FGF1的細胞,也會同時表現成熟神經細胞的標記NeuN。我們因此得知,表現FGF1的細胞是神經細胞。接著,我們也發現FGF1會和調控食物攝取量的催產素 (Oxytocin, Oxt)和Nesfatin-1 (Nesf-1)共同表現。再者,Nesf-1、Oxt和FGF1的表現量皆會在小鼠禁食18小時後下降,並且於再餵食之後上升。因此,我們假設FGF1涉及Nesf-1/Oxt有關的飽足感途徑。我們經由透過第三腦室給予Nesf-1、Oxt、與三種不同的FGF1,這些因子皆會導致小鼠進食量減少。此三種FGF1分別為全長 (FGF1FL)、截短 (Truncated, ΔFGF1) (缺少N端的15個胺基酸)、及FGF12-15 (由第2-15個胺基酸所組成的胜肽)。FGF1FL和ΔFGF1對食慾的抑制效果相似,且較FGF12-15顯著。最後,透過共同注射配體 (Ligand)/拮抗劑 (Antagonist)或配體/抗體,我們證明FGF1的訊息傳遞作用在Oxt的下游。
綜合先前的研究可得知,調控飽足感的訊息傳遞路徑為Nesf-1至Oxt,再傳遞到FGF1。此發現使得我們更加了解Nesf-1的訊息傳遞路徑,並提供未來治療肥胖的可能標的。
Fibroblast growth factor 1 (FGF1) is an important protein that is involved in neuronal development, maturation, neurite outgrowth, tumorigenesis, and wound healing. It also serves as a neurotrophic factor, widely expressed in adult brain cells. In addition, mice with homozygous deficiency of fgf1 gene and fed with high-fat diet resulted in obesity, high blood pressure, and diabetes. These results indicated that FGF1 plays an important role in metabolic homeostasis. However, the FGF1 metabolic pathway in brain remains unknown.
The mouse brain slices were stained with the customized antibody in our lab, and FGF1 was found expressed in paraventricular nuclei, co-expressed with neuronal marker, NeuN. The results demonstrated that FGF1-expressing cells are neurons. Then, we showed that FGF1 co-expressed with oxytocin and nesfatin-1, both are involved in food intake regulation. Next, we found that the levels of nesfatin-1, oxytocin, and FGF1 were reduced when the mice were deprived of food for 18 hours. Further, the levels of these three factors increase after refeeding. We then test the hypothesis that FGF1 is involved in the nesfatin-1/oxytocin-related satiety pathway. Through third ventricle administration of mice with nesfatin-1, oxytocin, and three different FGF1 variants, we confirmed that all of these factors could reduce food intake in mice. The three different FGF1 variants are full-length FGF1 (FGF1FL), truncated FGF1 (lacking the first 15 amino acids, ΔFGF1), and FGF12-15 (a peptide comprising #2-15 amino acids of FGF1). The appetite suppression effects in FGF1FL and ΔFGF1 are similar, while the appetite suppression by FGF12-15 is much less effective than FGF1FL and ΔFGF1. Finally, through the injections of combinations of ligand/antagonist or ligand/antibody, we demonstrated that FGF1 signaling is downstream of oxytocin.
Thus, we conclude that the signaling pathway for satiety is from nesfatin-1 to oxytocin and to FGF1. The findings together provide a better understanding of nesfatin-1 signaling pathway and also offer a new target in devising therapies for obesity treatment.
摘要.......................................I
Abstract...................................III
Table of Contents..........................V
Abbreviation...............................VI
Introduction...............................1
Materials and Methods......................7
Results....................................13
Discussion.................................19
References.................................26
Tables.....................................33
Figures....................................36
1. Armelin, H.A., Pituitary extracts and steroid hormones in the control of 3T3 cell growth. Proc Natl Acad Sci U S A, 1973. 70(9): p. 2702-6.
2. Gospodarowicz, D., Purification of a fibroblast growth factor from bovine pituitary. J Biol Chem, 1975. 250(7): p. 2515-20.
3. Ornitz, D.M. and N. Itoh, The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol, 2015. 4(3): p. 215-66.
4. Dono, R., Fibroblast growth factors as regulators of central nervous system development and function. Am J Physiol Regul Integr Comp Physiol, 2003. 284(4): p. R867-81.
5. Itoh, N., The Fgf families in humans, mice, and zebrafish: their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull, 2007. 30(10): p. 1819-25.
6. Goetz, R. and M. Mohammadi, Exploring mechanisms of FGF signalling through the lens of structural biology. Nat Rev Mol Cell Biol, 2013. 14(3): p. 166-80.
7. Itoh, N. and D.M. Ornitz, Functional evolutionary history of the mouse Fgf gene family. Dev Dyn, 2008. 237(1): p. 18-27.
8. Schoorlemmer, J. and M. Goldfarb, Fibroblast growth factor homologous factors are intracellular signaling proteins. Curr Biol, 2001. 11(10): p. 793-7.
9. Smith, E.R., L.P. McMahon, and S.G. Holt, Fibroblast growth factor 23. Ann Clin Biochem, 2014. 51(Pt 2): p. 203-27.
10. Potthoff, M.J., S.A. Kliewer, and D.J. Mangelsdorf, Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev, 2012. 26(4): p. 312-24.
11. Ozawa, K., et al., Expression of the fibroblast growth factor family and their receptor family genes during mouse brain development. Brain Res Mol Brain Res, 1996. 41(1-2): p. 279-88.
12. Mistry, N., et al., Of urchins and men: evolution of an alternative splicing unit in fibroblast growth factor receptor genes. RNA, 2003. 9(2): p. 209-17.
13. Chiu, I.M., K. Touhalisky, and C. Baran, Multiple controlling mechanisms of FGF1 gene expression through multiple tissue-specific promoters. Prog Nucleic Acid Res Mol Biol, 2001. 70: p. 155-74.
14. Myers, R.L., et al., Gene structure and differential expression of acidic fibroblast growth factor mRNA: identification and distribution of four different transcripts. Oncogene, 1993. 8(2): p. 341-9.
15. Myers, R.L., et al., Functional characterization of the brain-specific FGF-1 promoter, FGF-1.B. J Biol Chem, 1995. 270(14): p. 8257-66.
16. Payson, R.A., et al., Cloning of two novel forms of human acidic fibroblast growth factor (aFGF) mRNA. Nucleic Acids Res, 1993. 21(3): p. 489-95.
17. Myers, R.L., et al., Different fibroblast growth factor 1 (FGF-1) transcripts in neural tissues, glioblastomas and kidney carcinoma cell lines. Oncogene, 1995. 11(4): p. 785-9.
18. Chotani, M.A., K. Touhalisky, and I.M. Chiu, The small GTPases Ras, Rac, and Cdc42 transcriptionally regulate expression of human fibroblast growth factor 1. J Biol Chem, 2000. 275(39): p. 30432-8.
19. Zakrzewska, M., et al., Design of fully active FGF-1 variants with increased stability. Protein Eng Des Sel, 2004. 17(8): p. 603-11.
20. Rodriguez-Enfedaque, A., et al., FGF1 nuclear translocation is required for both its neurotrophic activity and its p53-dependent apoptosis protection. Biochim Biophys Acta, 2009. 1793(11): p. 1719-27.
21. Burgess, W.H., Structure-function studies of acidic fibroblast growth factor. Ann N Y Acad Sci, 1991. 638: p. 89-97.
22. Ornitz, D.M. and N. Itoh, Fibroblast growth factors. Genome Biol, 2001. 2(3): p. REVIEWS3005.
23. Itoh, N. and D.M. Ornitz, Evolution of the Fgf and Fgfr gene families. Trends Genet, 2004. 20(11): p. 563-9.
24. Cheng, X., et al., Acidic fibroblast growth factor delivered intranasally induces neurogenesis and angiogenesis in rats after ischemic stroke. Neurol Res, 2011. 33(7): p. 675-80.
25. Shi, H.L., et al., A novel single-chain variable fragment antibody against FGF-1 inhibits the growth of breast carcinoma cells by blocking the intracrine pathway of FGF-1. IUBMB Life, 2011. 63(2): p. 129-37.
26. Thisse, B. and C. Thisse, Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol, 2005. 287(2): p. 390-402.
27. Eckenstein, F., W.R. Woodward, and R. Nishi, Differential localization and possible functions of aFGF and bFGF in the central and peripheral nervous systems. Ann N Y Acad Sci, 1991. 638: p. 348-60.
28. Stock, A., et al., Localization of acidic fibroblast growth factor in specific subcortical neuronal populations. J Neurosci, 1992. 12(12): p. 4688-700.
29. Bugra, K., et al., Acidic Fibroblast Growth-Factor Is Expressed Abundantly by Photoreceptors within the Developing and Mature Rat Retina (Vol 5, Pg 1586, 1993). European Journal of Neuroscience, 1994. 6(6): p. 1062-1062.
30. Burgess, W.H. and T. Maciag, The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem, 1989. 58: p. 575-606.
31. Baird, A. and M. Klagsbrun, The Fibroblast Growth-Factor Family - an Overview. Annals of the New York Academy of Sciences, 1991. 638: p. R11-R12.
32. Alam, K.Y., et al., Characterization of the 1B promoter of fibroblast growth factor 1 and its expression in the adult and developing mouse brain. J Biol Chem, 1996. 271(47): p. 30263-71.
33. Hossain, W.A. and D.K. Morest, Fibroblast growth factors (FGF-1, FGF-2) promote migration and neurite growth of mouse cochlear ganglion cells in vitro: immunohistochemistry and antibody perturbation. J Neurosci Res, 2000. 62(1): p. 40-55.
34. Yun, Y.R., et al., Fibroblast growth factors: biology, function, and application for tissue regeneration. J Tissue Eng, 2010. 2010: p. 218142.
35. Lou, G., et al., Intranasal administration of TAT-haFGF((1)(4)(-)(1)(5)(4)) attenuates disease progression in a mouse model of Alzheimer's disease. Neuroscience, 2012. 223: p. 225-37.
36. Bouleau, S., et al., FGF1 inhibits p53-dependent apoptosis and cell cycle arrest via an intracrine pathway. Oncogene, 2005. 24(53): p. 7839-49.
37. Wiedlocha, A., et al., Dual mode of signal transduction by externally added acidic fibroblast growth factor. Cell, 1994. 76(6): p. 1039-51.
38. Jonker, J.W., et al., A PPARgamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature, 2012. 485(7398): p. 391-4.
39. Ito, J., et al., Astrocytes produce and secrete FGF-1, which promotes the production of apoE-HDL in a manner of autocrine action. J Lipid Res, 2005. 46(4): p. 679-86.
40. Oomura, Y., et al., A new brain glucosensor and its physiological significance. Am J Clin Nutr, 1992. 55(1 Suppl): p. 278S-282S.
41. De Saint Hilaire, Z. and S. Nicolaidis, Enhancement of slow wave sleep parallel to the satiating effect of acidic fibroblast growth factor in rats. Brain Res Bull, 1992. 29(3-4): p. 525-8.
42. Sasaki, K., et al., Effects of fibroblast growth factors and related peptides on food intake by rats. Physiol Behav, 1994. 56(2): p. 211-8.
43. Sasaki, K., et al., Actions of acidic fibroblast growth factor fragments on food intake in rats. Obes Res, 1995. 3 Suppl 5: p. 697S-706S.
44. Scarlett, J.M., et al., Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat Med, 2016. 22(7): p. 800-6.
45. Meister, B., Neurotransmitters in key neurons of the hypothalamus that regulate feeding behavior and body weight. Physiol Behav, 2007. 92(1-2): p. 263-71.
46. Hume, C., N. Sabatier, and J. Menzies, High-Sugar, but Not High-Fat, Food Activates Supraoptic Nucleus Neurons in the Male Rat. Endocrinology, 2017. 158(7): p. 2200-2211.
47. Sobrino Crespo, C., et al., Peptides and food intake. Front Endocrinol (Lausanne), 2014. 5: p. 58.
48. Sims, J.S. and J.F. Lorden, Effect of paraventricular nucleus lesions on body weight, food intake and insulin levels. Behav Brain Res, 1986. 22(3): p. 265-81.
49. Smith, K.L., et al., Overexpression of CART in the PVN increases food intake and weight gain in rats. Obesity (Silver Spring), 2008. 16(10): p. 2239-44.
50. Yang, Z.J., et al., Infusion of nicotine into the LHA enhances dopamine and 5-HT release and suppresses food intake. Pharmacol Biochem Behav, 1999. 64(1): p. 155-9.
51. Scott, M.M., et al., Central regulation of food intake, body weight, energy expenditure, and glucose homeostasis. Front Neurosci, 2014. 8: p. 384.
52. Maejima, Y., et al., Nesfatin-1-regulated oxytocinergic signaling in the paraventricular nucleus causes anorexia through a leptin-independent melanocortin pathway. Cell Metab, 2009. 10(5): p. 355-65.
53. Kim, Y.R., et al., The Impact of Oxytocin on Food Intake and Emotion Recognition in Patients with Eating Disorders: A Double Blind Single Dose Within-Subject Cross-Over Design. PLoS One, 2015. 10(9): p. e0137514.
54. Bonnet, M.S., et al., Central nesfatin-1-expressing neurons are sensitive to peripheral inflammatory stimulus. J Neuroinflammation, 2009. 6: p. 27.
55. Merali, Z., et al., Nesfatin-1 increases anxiety- and fear-related behaviors in the rat. Psychopharmacology (Berl), 2008. 201(1): p. 115-23.
56. Stengel, A. and Y. Tache, Nesfatin-1-Role as possible new potent regulator of food intake. Regulatory Peptides, 2010. 163(1-3): p. 18-23.
57. Garcia-Galiano, D., et al., Expanding roles of NUCB2/nesfatin-1 in neuroendocrine regulation. J Mol Endocrinol, 2010. 45(5): p. 281-90.
58. Tanida, M. and M. Mori, Nesfatin-1 stimulates renal sympathetic nerve activity in rats. Neuroreport, 2011. 22(6): p. 309-12.
59. Garcia-Galiano, D., et al., The Anorexigenic Neuropeptide, Nesfatin-1, Is Indispensable for Normal Puberty Onset in the Female Rat. Journal of Neuroscience, 2010. 30(23): p. 7783-7792.
60. Goebel, M., et al., Restraint stress activates nesfatin-1-immunoreactive brain nuclei in rats. Brain Res, 2009. 1300: p. 114-24.
61. Oh, I.S., et al., Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature, 2006. 443(7112): p. 709-12.
62. Ayada, C., U. Toru, and Y. Korkut, Nesfatin-1 and its effects on different systems. Hippokratia, 2015. 19(1): p. 4-10.
63. Yang, H.P., et al., Nonsocial functions of hypothalamic oxytocin. ISRN Neurosci, 2013. 2013: p. 179272.
64. Gimpl, G. and F. Fahrenholz, The oxytocin receptor system: structure, function, and regulation. Physiol Rev, 2001. 81(2): p. 629-83.
65. Valstad, M., et al., The relationship between central and peripheral oxytocin concentrations: a systematic review and meta-analysis protocol. Syst Rev, 2016. 5: p. 49.
66. Bealer, S.L., W.E. Armstrong, and W.R. Crowley, Oxytocin release in magnocellular nuclei: neurochemical mediators and functional significance during gestation. Am J Physiol Regul Integr Comp Physiol, 2010. 299(2): p. R452-8.
67. Deblon, N., et al., Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS One, 2011. 6(9): p. e25565.
68. Olszewski, P.K., et al., Oxytocin as feeding inhibitor: maintaining homeostasis in consummatory behavior. Pharmacol Biochem Behav, 2010. 97(1): p. 47-54.
69. Yamashita, M., et al., Involvement of prolactin-releasing peptide in the activation of oxytocin neurones in response to food intake. J Neuroendocrinol, 2013. 25(5): p. 455-65.
70. Ybarra, N., J.R. del Castillo, and E. Troncy, Involvement of the nitric oxide-soluble guanylyl cyclase pathway in the oxytocin-mediated differentiation of porcine bone marrow stem cells into cardiomyocytes. Nitric Oxide, 2011. 24(1): p. 25-33.
71. Elabd, C., et al., Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells, 2008. 26(9): p. 2399-407.
72. Tyzio, R., et al., Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science, 2006. 314(5806): p. 1788-92.
73. Haussler, H.U., G.F. Jirikowski, and J.D. Caldwell, Sex-Differences among Oxytocin-Immunoreactive Neuronal Systems in the Mouse Hypothalamus. Journal of Chemical Neuroanatomy, 1990. 3(4): p. 271-276.
74. Swaab, D.F., Ageing of the human hypothalamus. Horm Res, 1995. 43(1-3): p. 8-11.
75. Calza, L., et al., Influence of Aging on the Neurochemical Organization of the Rat Paraventricular Nucleus. Journal of Chemical Neuroanatomy, 1990. 3(3): p. 215-231.
76. Camerino, C., Low sympathetic tone and obese phenotype in oxytocin-deficient mice. Obesity (Silver Spring), 2009. 17(5): p. 980-4.
77. Evans, J.J., et al., Evidence that oxytocin is a physiological component of LH regulation in non-pregnant women. Human Reproduction, 2003. 18(7): p. 1428-1431.
78. Carmichael, M.S., et al., Plasma Oxytocin Increases in the Human Sexual-Response. Journal of Clinical Endocrinology & Metabolism, 1987. 64(1): p. 27-31.
79. Melis, M.R. and A. Argiolas, Central control of penile erection: a re-visitation of the role of oxytocin and its interaction with dopamine and glutamic acid in male rats. Neurosci Biobehav Rev, 2011. 35(3): p. 939-55.
80. Uvnas-Moberg, K. and M. Petersson, Oxytocin, a mediator of anti-stress, well-being, social interaction, growth and healing. Zeitschrift Fur Psychosomatische Medizin Und Psychotherapie, 2005. 51(1): p. 57-80.
81. Modahl, C., et al., Plasma oxytocin levels in autistic children. Biol Psychiatry, 1998. 43(4): p. 270-7.
82. Kohno, D., et al., Nesfatin-1 neurons in paraventricular and supraoptic nuclei of the rat hypothalamus coexpress oxytocin and vasopressin and are activated by refeeding. Endocrinology, 2008. 149(3): p. 1295-301.
83. Davisson, R.L., et al., Divergent functions of angiotensin II receptor isoforms in the brain. J Clin Invest, 2000. 106(1): p. 103-6.
84. Fitzsimons, J.T., Angiotensin, thirst, and sodium appetite. Physiol Rev, 1998. 78(3): p. 583-686.
85. Rigatto, K., et al., Salt appetite and the renin-angiotensin system: effect of oxytocin deficiency. Hypertension, 2003. 42(4): p. 793-7.
86. Coll, A.P. and G.S. Yeo, The hypothalamus and metabolism: integrating signals to control energy and glucose homeostasis. Curr Opin Pharmacol, 2013. 13(6): p. 970-6.
87. Williams, G., et al., The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol Behav, 2001. 74(4-5): p. 683-701.
88. D Richard, E.T., Energy Homeostasis: Paraventricular Nucleus (PVN) System. Elsevier Ltd, 2009: p. 1035-1041.
89. Sabatier, N., G. Leng, and J. Menzies, Oxytocin, feeding, and satiety. Front Endocrinol (Lausanne), 2013. 4: p. 35.
90. Zhang, G., et al., Neuropeptide exocytosis involving synaptotagmin-4 and oxytocin in hypothalamic programming of body weight and energy balance. Neuron, 2011. 69(3): p. 523-35.
91. Arletti, R., A. Benelli, and A. Bertolini, Oxytocin inhibits food and fluid intake in rats. Physiol Behav, 1990. 48(6): p. 825-30.
92. Olson, B.R., et al., Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides, 1991. 12(1): p. 113-8.
93. Kabasakalian, A., C.J. Ferretti, and E. Hollander, Oxytocin and Prader-Willi Syndrome. Curr Top Behav Neurosci, 2017.
94. Liao, Y.D., et al., Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase. Protein Sci, 2004. 13(7): p. 1802-10.
95. Stengel, A., et al., Central nesfatin-1 reduces dark-phase food intake and gastric emptying in rats: differential role of corticotropin-releasing factor2 receptor. Endocrinology, 2009. 150(11): p. 4911-9.
96. Zhang, G. and D. Cai, Circadian intervention of obesity development via resting-stage feeding manipulation or oxytocin treatment. Am J Physiol Endocrinol Metab, 2011. 301(5): p. E1004-12.
97. Hanai, K., et al., Central action of acidic fibroblast growth factor in feeding regulation. Am J Physiol, 1989. 256(1 Pt 2): p. R217-23.
98. Pan, W., H. Hsuchou, and A.J. Kastin, Nesfatin-1 crosses the blood-brain barrier without saturation. Peptides, 2007. 28(11): p. 2223-8.
99. Price, T.O., et al., Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1. Peptides, 2007. 28(12): p. 2372-81.
100. Viero, C., et al., REVIEW: Oxytocin: Crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther, 2010. 16(5): p. e138-56.
101. Bjorkstrand, E., M. Eriksson, and K. Uvnas-Moberg, Evidence of a peripheral and a central effect of oxytocin on pancreatic hormone release in rats. Neuroendocrinology, 1996. 63(4): p. 377-83.
102. Miura, K., et al., Molecular cloning of nucleobindin, a novel DNA-binding protein that contains both a signal peptide and a leucine zipper structure. Biochem Biophys Res Commun, 1992. 187(1): p. 375-80.
103. Hughes, A.J., et al., Single-cell western blotting. Nat Methods, 2014. 11(7): p. 749-55.
104. Patrie, K.M., et al., Site-directed mutagenesis and molecular modeling identify a crucial amino acid in specifying the heparin affinity of FGF-1. Biochemistry, 1999. 38(29): p. 9264-72.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *