|
1. HrubanRH, TakaoriK, KlimstraDS, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. In: American Journal of Surgical Pathology. Vol 28. ; 2004:977-987. doi:10.1097/01.pas.0000126675.59108.80 2. HrubanRH, AdsayNV, Albores-SaavedraJ, et al. Pancreatic intraepithelial neoplasia: A new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25(5):579-586. doi:10.1097/00000478-200105000-00003 3. HuangC, DuJ, XieK. FOXM1 and its oncogenic signaling in pancreatic cancer pathogenesis. Biochim Biophys Acta - Rev Cancer. 2014;1845(2):104-116. doi:10.1016/j.bbcan.2014.01.002 4. HidalgoM. Pancreatic Cancer. N Engl J Med. 2010;362(17):1605-1617. doi:10.1056/NEJMra0901557 5. DongG zhi, JeongJH, LeeY ih, et al. Diarylheptanoids suppress proliferation of pancreatic cancer PANC-1 cells through modulating shh-Gli-FoxM1 pathway. Arch Pharm Res. 2017;40(4):509-517. doi:10.1007/s12272-017-0905-2 6. LiD, XieK, WolffR, AbbruzzeseJL. Pancreatic cancer. In: Lancet. Vol 363. ; 2004:1049-1057. doi:10.1016/S0140-6736(04)15841-8 7. Fernández-MedardeA, SantosE. Ras in cancer and developmental diseases. Genes and Cancer. 2011;2(3):344-358. doi:10.1177/1947601911411084 8. BardeesyN, DePinhoRA. Pancreatic cancer biology and genetics. Nat Rev Cancer. 2002;2(12):897-909. doi:10.1038/nrc949 9. ZeitouniD, Pylayeva-GuptaY, DerCJ, BryantKL. KRAS mutant pancreatic cancer: No lone path to an effective treatment. Cancers (Basel). 2016;8(4). doi:10.3390/cancers8040045 10. VincentA, HermanJ, SchulickR, HrubanRH, GogginsM. Pancreatic cancer. In: The Lancet. Vol 378. ; 2011:607-620. doi:10.1016/S0140-6736(10)62307-0 11. HosodaW, ChianchianoP, GriffinJF, et al. Genetic analyses of isolated high-grade pancreatic intraepithelial neoplasia (HG-PanIN) reveal paucity of alterations in TP53 and SMAD4. J Pathol. 2017;242(1):16-23. doi:10.1002/path.4884 12. BellaL, ZonaS, Nestal de MoraesG, LamEWF. FOXM1: A key oncofoetal transcription factor in health and disease. Semin Cancer Biol. 2014;29(C):32-39. doi:10.1016/j.semcancer.2014.07.008 13. YangC, ChenH, TanG, et al. FOXM1 promotes the epithelial to mesenchymal transition by stimulating the transcription of Slug in human breast cancer. Cancer Lett. 2013;340(1):104-112. doi:10.1016/j.canlet.2013.07.004 14. YuCP, YuS, ShiL, et al. FoxM1 promotes epithelial-mesenchymal transition of hepatocellular carcinoma by targeting snail. Mol Med Rep. 2017;16(4):5181-5188. doi:10.3892/mmr.2017.7223 15. ZhangC, WangY, FengY, et al. Gli1 promotes colorectal cancer metastasis in a Foxm1-dependent manner by activating EMT and PI3K-AKT signaling. Oncotarget. 2016;7(52):86134-86147. doi:10.18632/oncotarget.13348 16. MengFDi, WeiJC, QuK, et al. FoxM1 overexpression promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma. World J Gastroenterol. 2015;21(1):196-213. doi:10.3748/wjg.v21.i1.196 17. RobertsEC, ShapiroPS, NahreiniTS, PagesG, PouyssegurJ, AhnNG. Distinct cell cycle timing requirements for extracellular signal-regulated kinase and phosphoinositide 3-kinase signaling pathways in somatic cell mitosis. Mol Cell Biol. 2002;22(20):7226-7241. doi:10.1128/MCB.22.20.7226-7241.2002 18. MaRYM, TongTHK, LeungWY, YaoKM. Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1. Methods Mol Biol. 2010;647:113-123. doi:10.1007/978-1-60761-738-9_6 19. DonzelliM, DraettaGF. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 2003;4(7):671-677. doi:10.1038/sj.embor.embor887 20. WangI-C, SnyderJ, ZhangY, et al. Foxm1 Mediates Cross Talk between Kras/Mitogen-Activated Protein Kinase and Canonical Wnt Pathways during Development of Respiratory Epithelium. Mol Cell Biol. 2012;32(19):3838-3850. doi:10.1128/MCB.00355-12 21. KalinichenkoVV. Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D.). Oncogene. 2014;33(46):5391-5396. doi:10.1038/onc.2013.475 22. PudovaEA, KudryavtsevaAV., FedorovaMS, et al. HK3 overexpression associated with epithelial-mesenchymal transition in colorectal cancer. BMC Genomics. 2018;19. doi:10.1186/s12864-018-4477-4 23. KimI-M, AckersonT, RamakrishnaS, et al. The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res. 2006;66(4):2153-2161. doi:10.1158/0008-5472.CAN-05-3003 24. LiQ, ZhangN, JiaZ, et al. Critical role and regulation of transcription factor foxm1 in human gastric cancer angiogenesis and progression. Cancer Res. 2009;69(8):3501-3509. doi:10.1158/0008-5472.CAN-08-3045 25. RinaldiG, RossiM, FendtSM. Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. Wiley Interdiscip Rev Syst Biol Med. 2018;10(1). doi:10.1002/wsbm.1397 26. Tarrado-CastellarnauM, AtauriPde, CascanteM. Oncogenic regulation of tumor metabolic reprogramming. Oncotarget. 2016;7(38):62726-62753. doi:10.18632/oncotarget.10911 27. HanahanD, WeinbergRA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013 28. LibertiMV., LocasaleJW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci. 2016;41(3):211-218. doi:10.1016/j.tibs.2015.12.001 29. PatraKC, HayN. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39(8):347-354. doi:10.1016/j.tibs.2014.06.005 30. KrugerNJ, VonSchaewenA. The oxidative pentose phosphate pathway: Structure and organisation. Curr Opin Plant Biol. 2003;6(3):236-246. doi:10.1016/S1369-5266(03)00039-6 31. OsellameLD, BlackerTS, DuchenMR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012;26(6):711-723. doi:10.1016/j.beem.2012.05.003 32. van denHeuvelL, SmeitinkJ. The oxidative phosphorylation (OXPHOS) system: nuclear genes and human genetic diseases. Bioessays. 2001;23(6):518-525. doi:10.1002/bies.1071 33. SousaCM, KimmelmanAC. The complex landscape of pancreatic cancer metabolism. Carcinogenesis. 2014;35(7). doi:10.1093/carcin/bgu097 34. FeigC, GopinathanA, NeesseA, ChanDS, CookN, TuvesonDA. The pancreas cancer microenvironment. Clin Cancer Res. 2012;18(16):4266-4276. doi:10.1158/1078-0432.CCR-11-3114 35. CohenR, NeuzilletC, Tijeras-RaballandA, et al. Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget. 2015;6(19):16832-16847. doi:10.18632/oncotarget.4160 36. GuillaumondF, IovannaJL, VasseurS. Pancreatic tumor cell metabolism: Focus on glycolysis and its connected metabolic pathways. Arch Biochem Biophys. 2014;545:69-73. doi:10.1016/j.abb.2013.12.019 37. GaglioD, MetalloCM, GameiroPA, et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 2011;7. doi:10.1038/msb.2011.56 38. CuiJ, ShiM, XieD, et al. FOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression. Clin Cancer Res. 2014;20(10):2595-2606. doi:10.1158/1078-0432.CCR-13-2407 39. WangY, YunY, WuB, et al. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription. Oncotarget. 2016;7(30):47985-47997. doi:10.18632/oncotarget.10103 40. JiangW, ZhouF, LiN, LiQ, WangL. FOXM1-LDHA signaling promoted gastric cancer glycolytic phenotype and progression. Int J Clin Exp Pathol. 2015;8(6):6756-6763. 41. ScottI, YouleRJ. Mitochondrial fission and fusion. Essays Biochem. 2010;47:85-98. doi:10.1042/bse0470085 42. YouleRJ, van derBliekAM. Mitochondrial Fission, Fusion, and Stress. Science (80- ). 2012;337(6098):1062-1065. doi:10.1126/science.1219855 43. KashatusJA, NascimentoA, MyersLJ, et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell. 2015;57(3):537-552. doi:10.1016/j.molcel.2015.01.002 44. RoeAJ, QiX. Drp1 phosphorylation by MAPK1 causes mitochondrial dysfunction in cell culture model of Huntington’s disease. Biochem Biophys Res Commun. 2018;496(2):706-711. doi:10.1016/j.bbrc.2018.01.114 45. HsiehC-C, ShyrY-M, LiaoW-Y, et al. Elevation of β-galactoside α2,6-sialyltransferase 1 in a fructoseresponsive manner promotes pancreatic cancer metastasis. Oncotarget. 2017;8(5):7691-7709. doi:10.18632/oncotarget.13845 46. WangX, KiyokawaH, DennewitzMB, CostaRH. The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci U S A. 2002;99(26):16881-16886. doi:10.1073/pnas.252570299 47. AhmadA, WangZ, KongD, et al. FoxM1 down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors. Breast Cancer Res Treat. 2010;122(2):337-346. doi:10.1007/s10549-009-0572-1 48. ReynoldsBA, WeissS. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707-1710. doi:10.1126/science.1553558 49. RogatzkiMJ, FergusonBS, GoodwinML, GladdenLB. Lactate is always the end product of glycolysis. Front Neurosci. 2015;9(FEB). doi:10.3389/fnins.2015.00022 50. SchurrA, PayneRS. Lactate, not pyruvate, is neuronal aerobic glycolysis end product: An in vitro electrophysiological study. Neuroscience. 2007;147(3):613-619. doi:10.1016/j.neuroscience.2007.05.002 51. ZorovaLD, PopkovVA, PlotnikovEY, et al. Mitochondrial membrane potential. Analytical Biochemistry. 2017. 52. Salazar-RoaM, MalumbresM. Fueling the Cell Division Cycle. Trends Cell Biol. 2017;27(1):69-81. doi:10.1016/j.tcb.2016.08.009 53. GowansGJ, HardieDG. AMPK: a cellular energy sensor primarily regulated by AMP. Biochem Soc Trans. 2014;42(1):71-75. doi:10.1042/BST20130244 54. HardieDG, RossFA, HawleySA. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251-262. doi:10.1038/nrm3311 55. HardieDG. Sensing of energy and nutrients by AMP-activated protein kinase. In: American Journal of Clinical Nutrition. Vol 93. ; 2011. doi:10.3945/ajcn.110.001925 56. YungMMH, ChanDW, LiuVWS, YaoK-M, NganHY-S. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade. BMC Cancer. 2013;13(1):327. doi:10.1186/1471-2407-13-327 57. MishraP, ChanDC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol. 2014;15(10):634-646. doi:10.1038/nrm3877 58. WeinbergF, HamanakaR, WheatonWW, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci. 2010;107(19):8788-8793. doi:10.1073/pnas.1003428107 59. LiouGY, DöpplerH, DelGiornoKE, et al. Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions. Cell Rep. 2016;14(10):2325-2336. doi:10.1016/j.celrep.2016.02.029 60. QiD, WuB, TongD, PanY, ChenW. Identification of key transcription factors in caerulein-induced pancreatitis through expression profiling data. Mol Med Rep. 2015;12(2):2570-2576. doi:10.3892/mmr.2015.3773 61. DingS-P, LiJ-C, JinC. A mouse model of severe acute pancreatitis induced with caerulein and lipopolysaccharide. World J Gastroenterol. 2003;9(3):584-589. 62. ZaninovicV, Gukovskaya a S, GukovskyI, MouriaM, PandolSJ. Cerulein upregulates ICAM-1 in pancreatic acinar cells, which mediates neutrophil adhesion to these cells. Am J Physiol Gastrointest Liver Physiol. 2000;279(4):G666-76. doi:10.1152/ajpgi.2000.279.4.G666 63. KimH. Cerulein pancreatitis: oxidative stress, inflammation, and apoptosis. Gut Liver. 2008;2(2):74-80. doi:10.5009/gnl.2008.2.2.74 64. PrincipeDR, DeCantB, MascariñasE, et al. TGFβ signaling in the pancreatic tumor microenvironment promotes fibrosis and immune evasion to facilitate tumorigenesis. Cancer Res. 2016;76(9):2525-2539. doi:10.1158/0008-5472.CAN-15-1293 65. ParkHJ, CarrJR, WangZ, et al. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J. 2009;28(19):2908-2918. doi:10.1038/emboj.2009.239 66. BalliD, RenX, ChouF-S, et al. Foxm1 transcription factor is required for macrophage migration during lung inflammation and tumor formation. Oncogene. 2012;31(34):3875-3888. doi:10.1038/onc.2011.549 67. XueJ, LinX, ChiuWT, et al. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis. J Clin Invest. 2014;124(2):564-579. doi:10.1172/JCI71104 68. TakakuraK, ShibazakiY, YoneyamaH, et al. Inhibition of cell proliferation and growth of pancreatic cancer by silencing of carbohydrate sulfotransferase 15 in vitro and in a xenograft model. PLoS One. 2015;10(12). doi:10.1371/journal.pone.0142981 69. OugolkovAV., BilimVN, BilladeauDD. Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2. Clin Cancer Res. 2008;14(21):6790-6796. doi:10.1158/1078-0432.CCR-08-1013 70. KaramitopoulouE, ZlobecI, TornilloL, et al. Differential cell cycle and proliferation marker expression in ductal pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia (PanIN). Pathology. 2010;42(3):229-234. doi:10.3109/00313021003631379 71. BarsottiAM, PrivesC. Pro-proliferative FoxM1 is a target of p53-mediated repression. Oncogene. 2009;28(48):4295-4305. doi:10.1038/onc.2009.282 |