帳號:guest(3.15.22.24)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝巧筠
作者(外文):Hsieh, Chio-Yun.
論文名稱(中文):FOXM1影響粒線體動態及能量消耗以調控胰臟癌細胞生長
論文名稱(外文):FOXM1 regulates pancreatic cancer cell proliferation via affects mitochondrial dynamics and energy consumption
指導教授(中文):王翊青
指導教授(外文):Wang, I-Ching
口試委員(中文):張壯榮
沈家寧
口試委員(外文):Chang, Chuang-Rung
Shen, Chia-Ning
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:105080567
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:101
中文關鍵詞:FOXM1粒線體動態能量消耗胰臟癌
外文關鍵詞:FOXM1mitochondrial dynamicsenergy consumptionpancreatic cancer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:19
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
胰腺導管腺癌(PDAC)是全球主要的惡性腫瘤之一。不論是中期或末期的胰臟導管腺癌,其五年生存率均低於 7 %。主要由於癌症初期形成及轉移初期都沒有明顯的症狀。許多研究表明,癌症轉移與癌細胞間質上皮細胞轉化(EMT)及癌細胞代謝中皆有重要關聯。先前許多研究指出Forkhead Box M1(FOXM1)轉錄因子可以調節細胞週期基因網絡並在許多器官的腫瘤發生中扮演關鍵作用。我們和其他學者過去在基因工程小鼠的研究發現,剔除細胞的Foxm1基因會導致抑制許多不同癌症的腫瘤發生。在這項研究中,我們使用致癌KrasG12D基因小鼠來研究Foxm1在胰腺癌起始過程中的作用,但是我們並未觀察到剔除Foxm1可以防止PanIN病變形成,但可以減少PanIN 細胞分裂生長。在細胞培養實驗中,我們發現抑制人類胰腺癌細胞中FOXM1基因表現,可造成細胞生長速度變慢以及降低細胞球體(sphere)形成的能力。同時,我們發現剔除FOXM1的胰臟癌細胞粒腺體動態轉變為延長型態(elongated) ,增加Mfn2和Drp1表現量並且增加粒腺體的膜電位,以及降低ATP的生成。我們使用OROBOROS測量,發現抑制FOXM1無法改變PDAC細胞株的粒腺體耗氧率(OCR)。因此我們認為剔除FOXM1會導致PDAC細胞生長速度降低及影響球體形成(sphere-forming)能力,並促使代償性地增加細胞內能量產生,以及改變粒線體型態轉變成延長態。
Pancreatic ductal adenocarcinoma (PDAC) is one of the malignant tumors worldwide. The five-year survival rate is less than 7 % for all stages of PDAC combined. This is because of no obvious symptoms in the early stages and early metastases. Many research indicated that cancer cell metastasis is associated with mesenchymal-epithelial transition (EMT) and their metabolism. The Forkhead Box M1 (FOXM1) transcription factor has been shown to regulate cell cycle gene and play a critical role in tumorigenesis of many organs. Genetically depletion of Foxm1 gene resulted in a decreased of tumorigenesis in many cancer mouse models. However, the role of FOXM1 in pancreatic cancer initiation, progression remain unclear. In this study, we used a genetic engineered mouse model to clarify the role of Foxm1 during initiation of pancreatic cancer by oncogenic KrasG12D. Although we did not observe the deletion of Foxm1 alleles in pancreatic acinar cells caused inhibition of PanIN lesion formation as anticipated, we found depleting FOXM1 decreased PanIN cell proliferation. Additionally, in vitro cell culture experiment showed that diminished expression of FOXM1 in human pancreatic cancer cell lines caused a decrease of cell proliferation on plates and sphere-forming ability. This phenotype is associated with elongated mitochondrial morphology increased mitochondrial membrane potential, and decreased ATP production. Interestingly, diminished expression of FOXM1 decreased mitochondrial oxygen consumption rate (OCR) as determined by OROBOROS, which was associated with increase mRNA levels of Mfn2 and Drp1in Kras mutated PDAC. We thus conclude that diminished FOXM1 levels causes a significantly decrease of PDAC cell proliferation, sphere-forming ability which correlates elevation of cellular ATP level via mitochondrial fusion.
Abstract 2
中文摘要 3
Contents 4
Introduction 7
Pancreatic ductal adenocarcinoma (PDAC) 7
Forkhead box M1 (FOXM1) 7
Metabolic reprogramming 7
Glycolysis metabolism 7
Pentose phosphate pathway (PPP) metabolism 7
Mitochondrial metabolism 7
Pancreatic ductal adenocarcinoma and metabolic reprogramming 7
FOXM1 and metabolic reprogramming 7
Mitochondrial morphology and the regulation of cellular processes 7
Hypothesis 7
Materials and methods 7
Cell culture 7
Transient transfection 7
Generation of lentiviral vectors 7
MTT assay 7
Western blot 7
Sphere culture 7
Real-time reverse transcription-PCR analysis 7
Measurement of ATP levels 7
Measurement of lactate levels 7
Measurement of mitochondrial respiration by OROBOROS 7
Measurement of mitochondrial membrane potential 7
Measurement of reductive oxidative species (ROS) 7
Cell cycle analysis 7
Immunofluorescence staining 7
Mouse model 7
Tail DNA extraction and genotyping 7
Harvest mouse 7
Immunohistochemistry staining 7
Results 7
Diminished expression of FOXM1 by RNAi caused a decrease of cell proliferation in pancreatic cancer cell lines 7
Knockdown FOXM1 inhibited sphere-forming ability in PDAC cell lines 7
Knockdown FOXM1 caused a decrease of ATP levels 7
Knockdown FOXM1 caused decrease of lactate levels 7
Diminished expression of FOXM1 by RNAi did not caused mitochondrial respiration change 7
Knockdown FOXM1 caused mitochondrial dynamics 7
Knockdown FOXM1 affected the mRNA expression levels of mitochondrial fusion and fission protein 7
Knockdown FOXM1 increased mitochondrial membrane potential 7
Knockdown FOXM1 caused-increase levels of reductive oxidative species (ROS) 7
Knockout Foxm1 in transgenic mouse model did not reduce the formation of PanIN 7
Conclusion and discussion 7
Diminished expression of FOXM1 caused decrease of ATP levels via affected glycolysis but not oxidative phosphorylation 7
Knockdown FOXM1 affected mitochondrial dynamics 7
Diminish expression of FOXM1 changed cellular energy level in Kras gain-of-function mutated PDAC cells rather than in KrasWT BxPC-3 cells 7
Knockout Foxm1 reduced the inflammation of pancreas in mouse model 7
Knockout Foxm1 did not reduce the formation of PanIN lesion in mouse model 7
Knockout Foxm1 decreased the numbers of mitochondria 7
Perspectives 7
Reference 7
Figure 7
Figure 1. Diminished expression of FOXM1 by RNAi caused decrease of cell proliferation in PDAC cell lines 7
Figure 2. Knockdown FOXM1 inhibited sphere-forming ability in PDAC cell lines. 7
Figure 3. Knockdown FOXM1 caused decrease of ATP levels in PDAC cell lines 7
Figure 4. Knockdown FOXM1 caused increase of lactate levels in PDAC cell lines 7
Figure 5. Diminished expression of FOXM1 in human pancreatic cancer cell lines by RNAi did not cause mitochondrial oxidative phosphorylation change 7
Figure 6. Knockdown FOXM1 expression caused mitochondrial morphology change in PDAC cell lines 7
Figure 7. Knockdown FOXM1 caused G1 arrest 7
Figure 8. The FOXM1 mRNA expression levels of knockdown FOXM1 by siRNA in PDAC cell lines 7
Figure 9. The Opa1 mRNA expression levels of knockdown FOXM1 by siRNA in PDAC cell lines 7
Figure 10. The Mfn2 mRNA expression levels of knockdown FOXM1 by siRNA in PDAC cell lines 7
Figure 11. Increase of Drp1 mRNA expression levels were detected in siFOXM1 transfected PDAC cell lines 7
Figure 12. Knockdown FOXM1 expression increased mitochondrial membrane potential in PDAC cell lines 7
Figure 13. Knockdown FOXM1 expression caused increase of reactive oxygen species (ROS) levels in PDAC human cell lines 7
Figure 14. Schemes shows generation of las-creER / Kras+/LSLG12D / Foxm1fl/fl mouse model for pancreatic cancer study 7
Figure 15. Conditional knockout of Foxm1 alleles in acinar cells did not affect the formation of PanIN 7
Figure 16. Body weight decreased in mice with oncogenic Kras-induced PanIN 7
Figure 17. Knockout Foxm1 did not inhibit PanIN initiation in thhe Elas-Kras pancreatic cancer model 7
Table 7
Table 1. qPCR primer list 7
Table 2. Antibody list 7
Table 3. NTES Lysis Buffer 7
Table 4. Mouse genotyping PCR primer and PCR program list 7
1. HrubanRH, TakaoriK, KlimstraDS, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. In: American Journal of Surgical Pathology. Vol 28. ; 2004:977-987. doi:10.1097/01.pas.0000126675.59108.80
2. HrubanRH, AdsayNV, Albores-SaavedraJ, et al. Pancreatic intraepithelial neoplasia: A new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25(5):579-586. doi:10.1097/00000478-200105000-00003
3. HuangC, DuJ, XieK. FOXM1 and its oncogenic signaling in pancreatic cancer pathogenesis. Biochim Biophys Acta - Rev Cancer. 2014;1845(2):104-116. doi:10.1016/j.bbcan.2014.01.002
4. HidalgoM. Pancreatic Cancer. N Engl J Med. 2010;362(17):1605-1617. doi:10.1056/NEJMra0901557
5. DongG zhi, JeongJH, LeeY ih, et al. Diarylheptanoids suppress proliferation of pancreatic cancer PANC-1 cells through modulating shh-Gli-FoxM1 pathway. Arch Pharm Res. 2017;40(4):509-517. doi:10.1007/s12272-017-0905-2
6. LiD, XieK, WolffR, AbbruzzeseJL. Pancreatic cancer. In: Lancet. Vol 363. ; 2004:1049-1057. doi:10.1016/S0140-6736(04)15841-8
7. Fernández-MedardeA, SantosE. Ras in cancer and developmental diseases. Genes and Cancer. 2011;2(3):344-358. doi:10.1177/1947601911411084
8. BardeesyN, DePinhoRA. Pancreatic cancer biology and genetics. Nat Rev Cancer. 2002;2(12):897-909. doi:10.1038/nrc949
9. ZeitouniD, Pylayeva-GuptaY, DerCJ, BryantKL. KRAS mutant pancreatic cancer: No lone path to an effective treatment. Cancers (Basel). 2016;8(4). doi:10.3390/cancers8040045
10. VincentA, HermanJ, SchulickR, HrubanRH, GogginsM. Pancreatic cancer. In: The Lancet. Vol 378. ; 2011:607-620. doi:10.1016/S0140-6736(10)62307-0
11. HosodaW, ChianchianoP, GriffinJF, et al. Genetic analyses of isolated high-grade pancreatic intraepithelial neoplasia (HG-PanIN) reveal paucity of alterations in TP53 and SMAD4. J Pathol. 2017;242(1):16-23. doi:10.1002/path.4884
12. BellaL, ZonaS, Nestal de MoraesG, LamEWF. FOXM1: A key oncofoetal transcription factor in health and disease. Semin Cancer Biol. 2014;29(C):32-39. doi:10.1016/j.semcancer.2014.07.008
13. YangC, ChenH, TanG, et al. FOXM1 promotes the epithelial to mesenchymal transition by stimulating the transcription of Slug in human breast cancer. Cancer Lett. 2013;340(1):104-112. doi:10.1016/j.canlet.2013.07.004
14. YuCP, YuS, ShiL, et al. FoxM1 promotes epithelial-mesenchymal transition of hepatocellular carcinoma by targeting snail. Mol Med Rep. 2017;16(4):5181-5188. doi:10.3892/mmr.2017.7223
15. ZhangC, WangY, FengY, et al. Gli1 promotes colorectal cancer metastasis in a Foxm1-dependent manner by activating EMT and PI3K-AKT signaling. Oncotarget. 2016;7(52):86134-86147. doi:10.18632/oncotarget.13348
16. MengFDi, WeiJC, QuK, et al. FoxM1 overexpression promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma. World J Gastroenterol. 2015;21(1):196-213. doi:10.3748/wjg.v21.i1.196
17. RobertsEC, ShapiroPS, NahreiniTS, PagesG, PouyssegurJ, AhnNG. Distinct cell cycle timing requirements for extracellular signal-regulated kinase and phosphoinositide 3-kinase signaling pathways in somatic cell mitosis. Mol Cell Biol. 2002;22(20):7226-7241. doi:10.1128/MCB.22.20.7226-7241.2002
18. MaRYM, TongTHK, LeungWY, YaoKM. Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1. Methods Mol Biol. 2010;647:113-123. doi:10.1007/978-1-60761-738-9_6
19. DonzelliM, DraettaGF. Regulating mammalian checkpoints through Cdc25 inactivation. EMBO Rep. 2003;4(7):671-677. doi:10.1038/sj.embor.embor887
20. WangI-C, SnyderJ, ZhangY, et al. Foxm1 Mediates Cross Talk between Kras/Mitogen-Activated Protein Kinase and Canonical Wnt Pathways during Development of Respiratory Epithelium. Mol Cell Biol. 2012;32(19):3838-3850. doi:10.1128/MCB.00355-12
21. KalinichenkoVV. Foxm1 transcription factor is required for the initiation of lung tumorigenesis by oncogenic Kras(G12D.). Oncogene. 2014;33(46):5391-5396. doi:10.1038/onc.2013.475
22. PudovaEA, KudryavtsevaAV., FedorovaMS, et al. HK3 overexpression associated with epithelial-mesenchymal transition in colorectal cancer. BMC Genomics. 2018;19. doi:10.1186/s12864-018-4477-4
23. KimI-M, AckersonT, RamakrishnaS, et al. The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer. Cancer Res. 2006;66(4):2153-2161. doi:10.1158/0008-5472.CAN-05-3003
24. LiQ, ZhangN, JiaZ, et al. Critical role and regulation of transcription factor foxm1 in human gastric cancer angiogenesis and progression. Cancer Res. 2009;69(8):3501-3509. doi:10.1158/0008-5472.CAN-08-3045
25. RinaldiG, RossiM, FendtSM. Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. Wiley Interdiscip Rev Syst Biol Med. 2018;10(1). doi:10.1002/wsbm.1397
26. Tarrado-CastellarnauM, AtauriPde, CascanteM. Oncogenic regulation of tumor metabolic reprogramming. Oncotarget. 2016;7(38):62726-62753. doi:10.18632/oncotarget.10911
27. HanahanD, WeinbergRA. Hallmarks of cancer: The next generation. Cell. 2011;144(5):646-674. doi:10.1016/j.cell.2011.02.013
28. LibertiMV., LocasaleJW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci. 2016;41(3):211-218. doi:10.1016/j.tibs.2015.12.001
29. PatraKC, HayN. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39(8):347-354. doi:10.1016/j.tibs.2014.06.005
30. KrugerNJ, VonSchaewenA. The oxidative pentose phosphate pathway: Structure and organisation. Curr Opin Plant Biol. 2003;6(3):236-246. doi:10.1016/S1369-5266(03)00039-6
31. OsellameLD, BlackerTS, DuchenMR. Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab. 2012;26(6):711-723. doi:10.1016/j.beem.2012.05.003
32. van denHeuvelL, SmeitinkJ. The oxidative phosphorylation (OXPHOS) system: nuclear genes and human genetic diseases. Bioessays. 2001;23(6):518-525. doi:10.1002/bies.1071
33. SousaCM, KimmelmanAC. The complex landscape of pancreatic cancer metabolism. Carcinogenesis. 2014;35(7). doi:10.1093/carcin/bgu097
34. FeigC, GopinathanA, NeesseA, ChanDS, CookN, TuvesonDA. The pancreas cancer microenvironment. Clin Cancer Res. 2012;18(16):4266-4276. doi:10.1158/1078-0432.CCR-11-3114
35. CohenR, NeuzilletC, Tijeras-RaballandA, et al. Targeting cancer cell metabolism in pancreatic adenocarcinoma. Oncotarget. 2015;6(19):16832-16847. doi:10.18632/oncotarget.4160
36. GuillaumondF, IovannaJL, VasseurS. Pancreatic tumor cell metabolism: Focus on glycolysis and its connected metabolic pathways. Arch Biochem Biophys. 2014;545:69-73. doi:10.1016/j.abb.2013.12.019
37. GaglioD, MetalloCM, GameiroPA, et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 2011;7. doi:10.1038/msb.2011.56
38. CuiJ, ShiM, XieD, et al. FOXM1 promotes the warburg effect and pancreatic cancer progression via transactivation of LDHA expression. Clin Cancer Res. 2014;20(10):2595-2606. doi:10.1158/1078-0432.CCR-13-2407
39. WangY, YunY, WuB, et al. FOXM1 promotes reprogramming of glucose metabolism in epithelial ovarian cancer cells via activation of GLUT1 and HK2 transcription. Oncotarget. 2016;7(30):47985-47997. doi:10.18632/oncotarget.10103
40. JiangW, ZhouF, LiN, LiQ, WangL. FOXM1-LDHA signaling promoted gastric cancer glycolytic phenotype and progression. Int J Clin Exp Pathol. 2015;8(6):6756-6763.
41. ScottI, YouleRJ. Mitochondrial fission and fusion. Essays Biochem. 2010;47:85-98. doi:10.1042/bse0470085
42. YouleRJ, van derBliekAM. Mitochondrial Fission, Fusion, and Stress. Science (80- ). 2012;337(6098):1062-1065. doi:10.1126/science.1219855
43. KashatusJA, NascimentoA, MyersLJ, et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell. 2015;57(3):537-552. doi:10.1016/j.molcel.2015.01.002
44. RoeAJ, QiX. Drp1 phosphorylation by MAPK1 causes mitochondrial dysfunction in cell culture model of Huntington’s disease. Biochem Biophys Res Commun. 2018;496(2):706-711. doi:10.1016/j.bbrc.2018.01.114
45. HsiehC-C, ShyrY-M, LiaoW-Y, et al. Elevation of β-galactoside α2,6-sialyltransferase 1 in a fructoseresponsive manner promotes pancreatic cancer metastasis. Oncotarget. 2017;8(5):7691-7709. doi:10.18632/oncotarget.13845
46. WangX, KiyokawaH, DennewitzMB, CostaRH. The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration. Proc Natl Acad Sci U S A. 2002;99(26):16881-16886. doi:10.1073/pnas.252570299
47. AhmadA, WangZ, KongD, et al. FoxM1 down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors. Breast Cancer Res Treat. 2010;122(2):337-346. doi:10.1007/s10549-009-0572-1
48. ReynoldsBA, WeissS. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992;255(5052):1707-1710. doi:10.1126/science.1553558
49. RogatzkiMJ, FergusonBS, GoodwinML, GladdenLB. Lactate is always the end product of glycolysis. Front Neurosci. 2015;9(FEB). doi:10.3389/fnins.2015.00022
50. SchurrA, PayneRS. Lactate, not pyruvate, is neuronal aerobic glycolysis end product: An in vitro electrophysiological study. Neuroscience. 2007;147(3):613-619. doi:10.1016/j.neuroscience.2007.05.002
51. ZorovaLD, PopkovVA, PlotnikovEY, et al. Mitochondrial membrane potential. Analytical Biochemistry. 2017.
52. Salazar-RoaM, MalumbresM. Fueling the Cell Division Cycle. Trends Cell Biol. 2017;27(1):69-81. doi:10.1016/j.tcb.2016.08.009
53. GowansGJ, HardieDG. AMPK: a cellular energy sensor primarily regulated by AMP. Biochem Soc Trans. 2014;42(1):71-75. doi:10.1042/BST20130244
54. HardieDG, RossFA, HawleySA. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13(4):251-262. doi:10.1038/nrm3311
55. HardieDG. Sensing of energy and nutrients by AMP-activated protein kinase. In: American Journal of Clinical Nutrition. Vol 93. ; 2011. doi:10.3945/ajcn.110.001925
56. YungMMH, ChanDW, LiuVWS, YaoK-M, NganHY-S. Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade. BMC Cancer. 2013;13(1):327. doi:10.1186/1471-2407-13-327
57. MishraP, ChanDC. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol. 2014;15(10):634-646. doi:10.1038/nrm3877
58. WeinbergF, HamanakaR, WheatonWW, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci. 2010;107(19):8788-8793. doi:10.1073/pnas.1003428107
59. LiouGY, DöpplerH, DelGiornoKE, et al. Mutant KRas-Induced Mitochondrial Oxidative Stress in Acinar Cells Upregulates EGFR Signaling to Drive Formation of Pancreatic Precancerous Lesions. Cell Rep. 2016;14(10):2325-2336. doi:10.1016/j.celrep.2016.02.029
60. QiD, WuB, TongD, PanY, ChenW. Identification of key transcription factors in caerulein-induced pancreatitis through expression profiling data. Mol Med Rep. 2015;12(2):2570-2576. doi:10.3892/mmr.2015.3773
61. DingS-P, LiJ-C, JinC. A mouse model of severe acute pancreatitis induced with caerulein and lipopolysaccharide. World J Gastroenterol. 2003;9(3):584-589.
62. ZaninovicV, Gukovskaya a S, GukovskyI, MouriaM, PandolSJ. Cerulein upregulates ICAM-1 in pancreatic acinar cells, which mediates neutrophil adhesion to these cells. Am J Physiol Gastrointest Liver Physiol. 2000;279(4):G666-76. doi:10.1152/ajpgi.2000.279.4.G666
63. KimH. Cerulein pancreatitis: oxidative stress, inflammation, and apoptosis. Gut Liver. 2008;2(2):74-80. doi:10.5009/gnl.2008.2.2.74
64. PrincipeDR, DeCantB, MascariñasE, et al. TGFβ signaling in the pancreatic tumor microenvironment promotes fibrosis and immune evasion to facilitate tumorigenesis. Cancer Res. 2016;76(9):2525-2539. doi:10.1158/0008-5472.CAN-15-1293
65. ParkHJ, CarrJR, WangZ, et al. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J. 2009;28(19):2908-2918. doi:10.1038/emboj.2009.239
66. BalliD, RenX, ChouF-S, et al. Foxm1 transcription factor is required for macrophage migration during lung inflammation and tumor formation. Oncogene. 2012;31(34):3875-3888. doi:10.1038/onc.2011.549
67. XueJ, LinX, ChiuWT, et al. Sustained activation of SMAD3/SMAD4 by FOXM1 promotes TGF-β-dependent cancer metastasis. J Clin Invest. 2014;124(2):564-579. doi:10.1172/JCI71104
68. TakakuraK, ShibazakiY, YoneyamaH, et al. Inhibition of cell proliferation and growth of pancreatic cancer by silencing of carbohydrate sulfotransferase 15 in vitro and in a xenograft model. PLoS One. 2015;10(12). doi:10.1371/journal.pone.0142981
69. OugolkovAV., BilimVN, BilladeauDD. Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase enhancer of zeste homologue 2. Clin Cancer Res. 2008;14(21):6790-6796. doi:10.1158/1078-0432.CCR-08-1013
70. KaramitopoulouE, ZlobecI, TornilloL, et al. Differential cell cycle and proliferation marker expression in ductal pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia (PanIN). Pathology. 2010;42(3):229-234. doi:10.3109/00313021003631379
71. BarsottiAM, PrivesC. Pro-proliferative FoxM1 is a target of p53-mediated repression. Oncogene. 2009;28(48):4295-4305. doi:10.1038/onc.2009.282
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *