帳號:guest(3.137.161.119)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):李哲緯
作者(外文):Lee, Che-Wei
論文名稱(中文):以U-2 OS細胞為模式探究CAP2於粒線體動態調控之角色
論文名稱(外文):Clarifying the role of CAP2 in mitochondrial dynamics in U-2 OS cells
指導教授(中文):張壯榮
指導教授(外文):Chang, Chuang-Rung
口試委員(中文):兵岳忻
王翊青
口試委員(外文):Ping, Yueh-Hsin
Wang, I-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:105080559
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:65
中文關鍵詞:粒線體動態平衡肌動蛋白細胞週期
外文關鍵詞:Mitochondrial dynamicsActinCell cycle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
粒線體是一個具有動態平衡特性的胞器,會不斷的進行分裂與融合,配合上移動與清除,以達到動態網路。粒線體具有能量提供、存放離子甚至是調控細胞凋亡的功能。許多先前研究中,發現肌動蛋白會參與粒線體的動態平衡調控,但並不了解其作用機制。我們實驗室在先前已經找出會與粒線體分裂蛋白DRP1有交互作用的肌動蛋白調節蛋白CAP2,本篇研究的目標是以U2-OS 細胞釐清CAP2如何參與調控粒線體的動態平衡。我們利用CRISPR/Cas9 基因編輯技術在U-2 OS細胞株中剔除CAP2基因,會造成具有超長網絡狀粒線體型形態的細胞比例增加,指出CAP2確實會參與粒線體分裂的過程。在剔除CAP2後,同時也會發現細胞倍數增值所需的時間增加,而在模擬相似的粒腺體形態情況下,並無發現倍數增值時間增加。在粒線體活性測試中,包含粒線體的膜電位、細胞內的氧化自由基總量和細胞的單位時間耗氧量,發現剔除CAP2後並無明顯的變化,表示剔除CAP2造成的形態變化與粒線體的功能缺陷之關聯性仍有待釐清。綜合以上,我們指出CAP2確實會影響粒線體動態平衡尤其是在粒線體分裂的過程。
Mitochondria are highly dynamic organelles; fusion, fission, and trafficking, determine mitochondrial reticulum morphology. Previous studies have implied that actin cytoskeleton involved in mitochondria dynamics; however, the role of actin regulates mitochondria dynamics remains obscure. Genetic screen performed in our lab identified an actin regulatory protein, Adenylyl cyclase associated protein (CAP2), may involve in mitochondrial dynamics regulation. CAP2 is known to regulate actin dynamics by severing F-actin and recharging G-actin. To clarify the role of CAP2 in mitochondria dynamics, we applied CRISPR/Cas9 system to delete CAP2 in U-2 OS cells. We found mitochondrial morphology in CAP2 knockout cells was hyperfused compared to parental cells. In CAP2 knockout cells, actin filaments assembly was disrupted. The similar hyperfused mitochondrial morphology was found under the treatment of pharmacological compound that disrupted actin dynamics. Additionally, we found CAP2 knockout alters cell cycle progression independent of mitochondrial morphology. Furthermore, CAP2 deletion does not affects mitochondrial activity. Together, we suggested CAP2 acts as a mitochondrial pro-fission factor in U2-OS cells.
Abstract 2
中文摘要 3
Acknowledgement 4
Contents 5
Chapter 1. Introduction 8
1.1 Mitochondria are double-membrane organelles of cells, responsible for ATP production, and regulating other important biological functions. 8
1.2 Mitochondria dynamics regulates the mitochondrial morphology via fission, fusion, and trafficking. 9
1.3 Mitochondrial dynamics associates with mitochondrial quality control 10
1.4 Relationship of cell cycle and mitochondrial morphology is blurry 11
1.5 The actin filaments are suggested a component of mitochondrial fission 12
1.6 CAP is a multifunctional protein, including actin polymerization and severing, these functions regulate actin dynamics 12
1.7 Specific aim 13
Chapter 2. Material and Method 14
2.1 Cell culture 14
2.2 Transfection of plasmids into cells 14
2.3 Nuclear genome edited by CRISPR/Cas9 system 15
2.4 DNA and RNA extraction 16
2.5 T7E1 Surveyor assay 17
2.6 Reverse transcription 18
2.7 Real-time quantitative PCR 19
2.8 Immunofluorescence staining 19
2.9 Actin labeling 20
2.10 Plasmid construction 20
2.11 Protein extraction 21
2.12 Western bolt 21
2.13 Antibodies 22
2.14 Cell cycle synchronization 23
2.15 Cell cycle analysis 23
2.16 Measurement of mitochondrial membrane potential 24
2.17 Measurment of cellular reactive oxygen species (ROS) 25
2.18 Measurement of oxygen consumption rate 25
Chapter 3. Results 27
3.1 Deleting CAP2 gene in U-2 OS cells by CRISPR/Cas9 system 27
3.2 CAP2 deletion causes hyperfused mitochondria 28
3.3 CAP2 deletion disrupts actin dynamics 28
3.4 Disruption of actin polymerization affects mitochondrial morphology 29
3.5 CAP2 deletion prolongs G2/M phase period 30
3.6 Hyperfused mitochondria is not the key factor to alter cell cycle progression in CAP2-/- cells 31
3.7 CAP2 deletion does not alter mitochondrial activity 32
Chapter 4. Conclusion, Discussion and Perspective 34
4.1 CAP2 regulates mitochondrial dynamics through its function in actin dynamics regulation 34
4.2 CAP2 deletion delays cell cycle progression independent of altered mitochondrial dynamics 34
4.3 CAP2 deletion affects mitochondrial dynamics, but not mitochondrial activity. 35
4.4 Perspective 36
Chapter 5. Reference 38
List of Figures
Figure 1. The illustration of our project. 45
Figure 2. Verifying CAP2-/- strain generated by CRISPR/Cas9 system. 47
Figure 3. CAP2 deletion affects mitochondrial dynamics. 49
Figure 4. CAP2 deletion affects actin dynamics. 50
Figure 5. Disrupting actin dynamics affects mitochondrial dynamics. 53
Figure 6. CAP2 regulates cell cycle, particularly G2/M phase. 56
Figure 7. Cell cycle progression delayed in CAP2-/- is not caused by mitochondrial morphology. 60
Figure 8. CAP2 knockout does not affect mitochondrial activity. 63
Figure 9. the illustrations of our research 64
1. Henze, K. and W. Martin, Evolutionary biology: essence of mitochondria. Nature, 2003. 426(6963): p. 127-8.
2. Gellerich, F.N., et al., Function of the mitochondrial outer membrane as a diffusion barrier in health and diseases. Biochem Soc Trans, 2000. 28(2): p. 164-9.
3. Mannella, C.A., Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta, 2006. 1763(5-6): p. 542-8.
4. Scalettar, B.A., J.R. Abney, and C.R. Hackenbrock, Dynamics, structure, and function are coupled in the mitochondrial matrix. Proc Natl Acad Sci U S A, 1991. 88(18): p. 8057-61.
5. Arora, K.K. and P.L. Pedersen, Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J Biol Chem, 1988. 263(33): p. 17422-8.
6. Fernie, A.R., F. Carrari, and L.J. Sweetlove, Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol, 2004. 7(3): p. 254-61.
7. Hajnoczky, G., et al., Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium, 2006. 40(5-6): p. 553-60.
8. Cortassa, S., B. O'Rourke, and M.A. Aon, Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS. Biochim Biophys Acta, 2014. 1837(2): p. 287-95.
9. Wang, C. and R.J. Youle, The role of mitochondria in apoptosis*. Annu Rev Genet, 2009. 43: p. 95-118.
10. Contreras, L., et al., Mitochondria: the calcium connection. Biochim Biophys Acta, 2010. 1797(6-7): p. 607-18.
11. Finkel, T., Signal transduction by mitochondrial oxidants. J Biol Chem, 2012. 287(7): p. 4434-40.
12. Seo, A.Y., et al., New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci, 2010. 123(Pt 15): p. 2533-42.
13. Gao, J., et al., Abnormalities of Mitochondrial Dynamics in Neurodegenerative Diseases. Antioxidants (Basel), 2017. 6(2).
14. Westermann, B., Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol, 2010. 11(12): p. 872-84.
15. Hoppins, S., L. Lackner, and J. Nunnari, The machines that divide and fuse mitochondria. Annu Rev Biochem, 2007. 76: p. 751-80.
16. Smirnova, E., et al., Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell, 2001. 12(8): p. 2245-56.
17. Rojo, M., et al., Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci, 2002. 115(Pt 8): p. 1663-74.
18. Merkwirth, C. and T. Langer, Mitofusin 2 builds a bridge between ER and mitochondria. Cell, 2008. 135(7): p. 1165-7.
19. Chen, H., et al., Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol, 2003. 160(2): p. 189-200.
20. Varanita, T., et al., The OPA1-dependent mitochondrial cristae remodeling pathway controls atrophic, apoptotic, and ischemic tissue damage. Cell Metab, 2015. 21(6): p. 834-44.
21. Mishra, P., et al., Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab, 2014. 19(4): p. 630-41.
22. Anesti, V. and L. Scorrano, The relationship between mitochondrial shape and function and the cytoskeleton. Biochim Biophys Acta, 2006. 1757(5-6): p. 692-9.
23. Hollenbeck, P.J. and W.M. Saxton, The axonal transport of mitochondria. J Cell Sci, 2005. 118(Pt 23): p. 5411-9.
24. Sheng, Z.H., Mitochondrial trafficking and anchoring in neurons: New insight and implications. J Cell Biol, 2014. 204(7): p. 1087-98.
25. Zorov, D.B., M. Juhaszova, and S.J. Sollott, Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 2014. 94(3): p. 909-50.
26. Wei, Y.H. and H.C. Lee, Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med (Maywood), 2002. 227(9): p. 671-82.
27. Ashrafi, G. and T.L. Schwarz, The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ, 2013. 20(1): p. 31-42.
28. Bockler, S., et al., Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates. J Cell Biol, 2017. 216(8): p. 2481-2498.
29. Youle, R.J. and A.M. van der Bliek, Mitochondrial fission, fusion, and stress. Science, 2012. 337(6098): p. 1062-5.
30. Ni, H.M., J.A. Williams, and W.X. Ding, Mitochondrial dynamics and mitochondrial quality control. Redox Biol, 2015. 4: p. 6-13.
31. Itoh, K., et al., Mitochondrial dynamics in neurodegeneration. Trends Cell Biol, 2013. 23(2): p. 64-71.
32. Chen, H. and D.C. Chan, Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet, 2009. 18(R2): p. R169-76.
33. Lopez-Mejia, I.C. and L. Fajas, Cell cycle regulation of mitochondrial function. Curr Opin Cell Biol, 2015. 33: p. 19-25.
34. Horn, S.R., et al., Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability. Mol Biol Cell, 2011. 22(8): p. 1207-16.
35. Qian, W., et al., Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. J Cell Sci, 2012. 125(Pt 23): p. 5745-57.
36. Lee, S., et al., Human mitochondrial Fis1 links to cell cycle regulators at G2/M transition. Cell Mol Life Sci, 2014. 71(4): p. 711-25.
37. Rehman, J., et al., Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J, 2012. 26(5): p. 2175-86.
38. Martinez-Diez, M., et al., Biogenesis and dynamics of mitochondria during the cell cycle: significance of 3'UTRs. PLoS One, 2006. 1: p. e107.
39. Dominguez, R. and K.C. Holmes, Actin structure and function. Annu Rev Biophys, 2011. 40: p. 169-86.
40. Hatch, A.L., et al., Actin filaments as dynamic reservoirs for Drp1 recruitment. Mol Biol Cell, 2016. 27(20): p. 3109-3121.
41. Korobova, F., V. Ramabhadran, and H.N. Higgs, An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science, 2013. 339(6118): p. 464-7.
42. Hatch, A.L., P.S. Gurel, and H.N. Higgs, Novel roles for actin in mitochondrial fission. J Cell Sci, 2014. 127(Pt 21): p. 4549-60.
43. Li, S., et al., Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission. J Cell Biol, 2015. 208(1): p. 109-23.
44. Ji, W.K., et al., Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. Elife, 2015. 4: p. e11553.
45. Fedor-Chaiken, M., R.J. Deschenes, and J.R. Broach, SRV2, a gene required for RAS activation of adenylate cyclase in yeast. Cell, 1990. 61(2): p. 329-40.
46. Ono, S., The role of cyclase-associated protein in regulating actin filament dynamics - more than a monomer-sequestration factor. J Cell Sci, 2013. 126(Pt 15): p. 3249-58.
47. Kotila, T., et al., Structural basis of actin monomer re-charging by cyclase-associated protein. Nat Commun, 2018. 9(1): p. 1892.
48. Iwase, S. and S. Ono, Conserved hydrophobic residues in the CARP/beta-sheet domain of cyclase-associated protein are involved in actin monomer regulation. Cytoskeleton (Hoboken), 2017. 74(9): p. 343-355.
49. Zhou, G.L., H. Zhang, and J. Field, Mammalian CAP (Cyclase-associated protein) in the world of cell migration: Roles in actin filament dynamics and beyond. Cell Adh Migr, 2014. 8(1): p. 55-9.
50. Meyer, J.N., QPCR: a tool for analysis of mitochondrial and nuclear DNA damage in ecotoxicology. Ecotoxicology, 2010. 19(4): p. 804-11.
51. Rosner, M., K. Schipany, and M. Hengstschlager, Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle. Nat Protoc, 2013. 8(3): p. 602-26.
52. Cecchini, M.J., M. Amiri, and F.A. Dick, Analysis of Cell Cycle Position in Mammalian Cells. Journal of Visualized Experiments : JoVE, 2012(59): p. 3491.
53. Perry, S.W., et al., Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. BioTechniques, 2011. 50(2): p. 98-115.
54. Muller, F., The nature and mechanism of superoxide production by the electron transport chain: Its relevance to aging. J Am Aging Assoc, 2000. 23(4): p. 227-53.
55. Han, D., E. Williams, and E. Cadenas, Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J, 2001. 353(Pt 2): p. 411-6.
56. Medhora, M., et al., 20-HETE increases superoxide production and activates NAPDH oxidase in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol, 2008. 294(5): p. L902-11.
57. Makrecka-Kuka, M., G. Krumschnabel, and E. Gnaiger, High-Resolution Respirometry for Simultaneous Measurement of Oxygen and Hydrogen Peroxide Fluxes in Permeabilized Cells, Tissue Homogenate and Isolated Mitochondria. Biomolecules, 2015. 5(3): p. 1319-1338.
58. Penefsky, H.S., Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis. Proceedings of the National Academy of Sciences of the United States of America, 1985. 82(6): p. 1589-1593.
59. Rose, S., et al., Oxidative stress induces mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines in a well-matched case control cohort. PLoS One, 2014. 9(1): p. e85436.
60. Li, N., et al., Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem, 2003. 278(10): p. 8516-25.
61. Ma, X., et al., Mitochondrial Electron Transport Chain Complex III Is Required for Antimycin A to Inhibit Autophagy. Chemistry & biology, 2011. 18(11): p. 1474-1481.
62. Brand, M.D. and D.G. Nicholls, Assessing mitochondrial dysfunction in cells. Biochem J, 2011. 435(2): p. 297-312.
63. Ran, F.A., et al., Genome engineering using the CRISPR-Cas9 system. Nat Protoc, 2013. 8(11): p. 2281-2308.
64. Mashal, R.D., J. Koontz, and J. Sklar, Detection of mutations by cleavage of DNA heteroduplexes with bacteriophage resolvases. Nat Genet, 1995. 9(2): p. 177-83.
65. Lila, T. and D.G. Drubin, Evidence for physical and functional interactions among two Saccharomyces cerevisiae SH3 domain proteins, an adenylyl cyclase-associated protein and the actin cytoskeleton. Mol Biol Cell, 1997. 8(2): p. 367-85.
66. Freeman, N.L. and J. Field, Mammalian homolog of the yeast cyclase associated protein, CAP/Srv2p, regulates actin filament assembly. Cell Motil Cytoskeleton, 2000. 45(2): p. 106-20.
67. Morton, W.M., K.R. Ayscough, and P.J. McLaughlin, Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat Cell Biol, 2000. 2(6): p. 376-8.
68. Horbay, R. and R. Bilyy, Mitochondrial dynamics during cell cycling. Apoptosis, 2016. 21(12): p. 1327-1335.
69. Mishra, P. and D.C. Chan, Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol, 2014. 15(10): p. 634-46.
70. Yang, Y., et al., Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A, 2008. 105(19): p. 7070-5.
71. Margineantu, D.H., et al., Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion, 2002. 1(5): p. 425-35.
72. Duvezin-Caubet, S., et al., Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J Biol Chem, 2006. 281(49): p. 37972-9.
73. Ono, T., et al., Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat Genet, 2001. 28(3): p. 272-5.
74. Narendra, D.P., et al., PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol, 2010. 8(1): p. e1000298.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *