帳號:guest(3.12.136.218)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝宗霖
作者(外文):Sie, Zong-Lin
論文名稱(中文):斑馬魚wnk1對腫瘤誘導血管新生作用的功能分析
論文名稱(外文):Functional analysis of WNK lysine deficient protein kinase 1 (wnk1) on tumor-induced angiogenesis in zebrafish
指導教授(中文):喻秋華
汪宏達
指導教授(外文):Yuh, Chiou-Hwa
Wang, Horng-Dar
口試委員(中文):周志中
李士傑
劉淑貞
口試委員(外文):Chou, Tz-Chong
Lee, Shyh-Jye
Liu, Shu-Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:105080555
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:103
中文關鍵詞:斑馬魚腫瘤誘導血管新生離氨酸缺陷型蛋白激酶-1(WNK1)大腸直腸癌肝細胞癌異種移植
外文關鍵詞:ZebrafishTumor-induced angiogensisWith-no-K (lysine) protein kinase 1 (WNK1)Hepatocellular carcinoma (HCC)Colorectal cancer (CRC)Xenotransplant
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
離氨酸缺陷型蛋白激酶-1(WNK1)是一類具有非典型激酶域的離氨酸-絲氨酸蛋白激酶,先前研究發現WNK1在癌細胞大量表現,並已在小鼠和斑馬魚模式中證實WNK1參與胚胎的血管新生。有許多證據支持胚胎血管新生與腫瘤誘導血管新生為相同的分子路徑所調控,我因此想了解WNK1是否參與腫瘤誘導血管新生,並進一步探討WNK1作為癌症治療標地的可能性。
首先我以嗎啉基反義寡核苷酸技術,敲弱WNK1在斑馬魚的同源基因wnk1a和wnk1b,再利用斑馬魚胚胎模式進行腫瘤細胞株的異種移植,觀察腫瘤誘導血管新生作用及腫瘤細胞增生。我發現敲弱 wnk1時,會抑制腫瘤誘導血管新生作用,並且顯著降低了腫瘤細胞的增生。與前人研究中wnk1對胚胎血管新生作用類似,抑制wnk1a比抑制wnk1b更具有減少腫瘤誘導血管新生及降低腫瘤細胞增生的效果。這些初步的結果顯示:WNK1很可能具有作為癌症治療標靶的潛力。
為驗證此一假說,我再次以斑馬魚胚胎異種移植模式,測試WNK抑制劑對於腫瘤誘導血管新生的影響。兩種具有不同機轉的WNK抑制劑WNK463和Closantel,皆有效抑制胚胎血管新生以及降低腫瘤細胞增生。此外我們也利用Tg (ifabp:RPIA; myl7:EGFP)轉基因斑馬魚的腸癌模式,口服餵食WNK抑制劑,以即時聚合酶鏈式反應 (QPCR) 與病理切片分析的結果顯示:餵食一個月的WNK463或 Closantel對大腸直腸癌的生成具有療效。
我的實驗結果顯示:WNK1在腫瘤誘導血管新生的過程中扮演相當重要的角色,藉由抑制WNK1在活體中的表現量或是活性能夠降低腫瘤的增生與形成,這證實了WNK1能夠做為癌症治療的標靶之一。我亦成功建立於血管中大量表現wnk1a以及在血管中條件式剔除wnk1a表現的轉基因斑馬魚,將與RPIA轉基因魚腸癌模型及HBx,Src轉基因魚肝癌模型交配,更進一步研究WNK1在癌症形成中的功能及其作為癌症治療標地的可能性。
The with-no-lysine (K) kinase I (WNK1), is a serine/threonine protein kinase with atypical location of conserved catalytic lysine in kinase domain. Previous study showed that WNK1 is overexpressed in cancer and is involved in embryonic angiogenesis in mouse and zebrafish model. Abundant evidence supports that molecules and pathways are shared during embryonic and tumor-induced angiogenesis, therefore I set out to investigate the role of WNK1 in tumor-induced angiogenesis and whether WNK1 serves as a cancer therapeutic target.
First of all, I used morpholino-antisense oligonucleotide to knockdown wnk1a and wnk1b (two WNK1 orthologue in zebrafish), then performed xenotransplantation of hepatoma cells to zebrafish morphants to examine the effects on tumor-induced angiogenesis and tumor cell proliferation. I found wnk1 knockdown decreased tumor-induced ectopic vessel formation as well as tumor proliferation compared to the control. Similar to our previous study of wnk1 on embryonic angiogenesis, wnk1a knockdown had more significant effects on tumor-induced angiogenesis than wnk1b knockdown. The result demonstrated that knockdown wnk1 reduced tumor-induced angiogenesis and prevented tumor cell proliferation, it shed a light on WNK1 as a cancer therapeutic target.
Next, two different WNK1 inhibitors (WNK463 and Closantel) were examined by using zebrafish xenotransplantation model for their anti-angiogenesis and anti-tumor cell proliferation effects. Both of the WNK1 inhibitors are effective to inhibit embryonic angiogenesis and tumor cell proliferation. In order to validate the anti-cancer effect of WNK1 inhibitors, adult transgenic fish Tg (ifabp:RPIA; myl7:EGFP) with colorectal cancer and Tg (fabp10a:HBx-mCherry, Src; myl7:EGFP) with hepatocellular carcinoma were oral gavaged for one month, and intestine or liver specimens were collected for molecular and pathological examination. I found that the RPIA transgenic fish reduced intestinal tumorigenesis and liver carcinogenesis after treated with WNK463 or Closantel compared to the control.
These results demonstrated that WNK1 plays an important role in tumor-induced angiogenesis, and inhibition of WNK1 reduces tumor cell proliferation and cancer formation in vivo, proving WNK1 could be a cancer therapeutic target. I also had established genetic modified zebrafish with wnk1a overexpression or conditional knockout in endothelial cell, and will be crossed with RPIA transgenic fish with colon cancer or HBx, Src transgenic fish with liver cancer to investigate the role of WNK1 in cancer development and therapeutic target.
Abbreviation list (according to order of alphabet) I
中文摘要 III
Abstract IV
Table of contents V
Chapter 1 Introduction 1
1.1 Lysine deficient protein kinase 1; With-no-lysine (K) kinase 1 (WNK1) 1
1.1.1 WNK family 1
1.1.2 WNK Function 1
1.1.3 WNK1 and Angiogenesis 2
1.1.4 WNK1 inhibitors 3
1.2 Zebrafish model 4
1.2.1 Advantages of zebrafish model 4
1.2.2 Transgenic fish lines used in this study 4
1.2.3 Angiogenesis in zebrafish 5
1.2.4 Xenotransplantation model 6
Chapter 2 Materials and Methods 7
2.1 Zebrafish husbandry 7
2.2 Zebrafish lines 7
2.3 Embryos collection 7
2.4 Microinjection 7
2.5 Cell culture 8
2.6 Establishment of Hep3B_LifeactRFP stable line 8
2.8 Examine the inhibitory effect on tumor-induced angiogenesis via xenotransplantation using morphants 9
2.9 Resource of compounds 10
2.10 Sub-lethal dose test 10
2.11 Inhibition of embryonic angiogenesis 11
2.12 Using xenotransplantation assay to examine the anti-tumor cell proliferation 11
2.13 Confocal microscopy 12
2.14 Oral gavage 12
2.15 Tissue collection and paraffin section 13
2.16 Hematoxylin and eosin stain 14
2.17 Immunohistochemistry stain 15
2.18 Total RNA isolation 16
2.19 Reverse transcription polymerase chain reaction (RT-PCR) 17
2.20 Real time quantitative polymerase chain reaction (QPCR) 18
2.21 Gateway cloning 19
2.22 TALEN-mediated homologous recombination 20
2.23 In vitro transcription 22
2.24 Statistical analysis 23
Chapter 3 Results 24
3.1 Identification of tumor cells with higher angiogenic factor expression for xenotransplantation study. 24
3.2 Establishment of Hep3B_LifeactRFP stable line 24
3.3 Hep3B_LifeAct-RFP stable line are effective to induce angiogenesis in zebrafish embryos 25
3.4 wnk1a/b knockdown reduced tumor-induced angiogenesis and prevent tumor cell proliferation in zebrafish embryos 25
3.5 WNK1 inhibitors-WNK463 and Closantel prevent embryonic angiogenesis 26
3.6 Determine the survival curve and half maximal lethal concentration (LC50) of WNK463 and Closantel for xenotransplantation assay 27
3.7 WNK1 inhibitors-WNK463 and Closantel exhibited stronger anti-proliferation activity than VEGFR inhibitor (PTK787) in xenotransplantation assay 27
3.8 Oral gavage WNK1 inhibitors-WNK463 and Closantel reduced tumorigenesis on adult zebrafish colorectal cancer (CRC) model 28
3.9 Oral gavage WNK1 inhibitors on adult zebrafish reduced tumorigenesis on adult zebrafish hepatocellular carcinoma (HCC) model 29
Chapter 4 Discussion 31
4.1 Possible mechanism of wnk1 involved tumor induced angiogenesis 31
4.2 Comparison of WNK1 inhibitors versus other anti-angiogenesis therapeutics 33
4.3 Future perspective 34
Figures and Tables 36
Figure 1. Identification of tumor cells exhibiting higher angiogenic factors for xenotransplantation study 36
Figure 2. Establishment of Hep3B_LifeactRFP stable line 38
Figure 3. Hep3B_LifeactRFP stable line induced angiogenesis in zebrafish embryos 40
Figure 4. wnk1 knockdown reduced tumor-induced angiogenesis in zebrafish embryos 42
Figure 5. wnk1 knockdown prevented tumor cell proliferation in zebrafish embryos 44
Figure 6. Anti-angiogenesis effect of WNK463 46
Figure 7. Anti-angiogenesis effect of Closantel 48
Figure 8. Sub-lethal test and determination LC50 of WNK463 for xenotransplantation assay 50
Figure 9. Sub-lethal test and determination the LC50 of Closantel for xenotransplantation assay 52
Figure 10. Comparing the anti-proliferation ability of PTK787, WNK463 and Closantel by xenotransplantation assay. 54
Figure 11. Measurement of body length, body width, body weight of RPIA transgenic fish before and after oral gavage 56
Figure 12. QPCR analysis of RPIA transgenic fish treated with WNK1 inhibitors 58
Figure 13. H&E stain analysis of RPIA transgenic fish treated with WNK1 inhibitors 60
Figure 14. PCNA expression revealed by IHC analysis for RPIA transgenic fish treated with WNK1 inhibitors 62
Figure 15. Measurement of body length, body width, body weight of Src, HBx transgenic fish before and after oral gavage 64
Figure 16. QPCR analysis of HBx, Src transgenic fish treated with WNK1 inhibitors 66
Figure 17. H&E stain analysis of HBx, Src transgenic fish treated with WNK1 inhibitors 68
Table 1. The primer information for qPCR analysis in human cell line 70
Table 2. The primer information for qPCR analysis in zebrafish 71
Supplementary Information 72
Supplementary Figure 1. FASC of un-transfected and rLVUbi-LifeAct-TagRFP transfected Hep3B cell lines 72
Supplementary Figure 2. Gene expression pattern of RPIA transgenic fish treated with WNK1 inhibitors 74
Supplementary Figure 3. Gene expression pattern of HBx, Src transgenic fish treated with WNK1 inhibitors 77
Supplementary Figure 4. Schematic diagram of generation endothelial wnk1a conditional knockout fish using the Cre-loxP System 80
Supplementary Data 1 Cloning of Tg (fli1:wnk1a;myl7:EGFP) transgenic fish 82
Supplementary Data 2 Cloning of Tg (fli1:CreERT2;myl7:EGFP) transgenic fish 86
Supplementary Data 3 Cloning of Tg (LoxP-wnk1a-DsRed-LoxP) transgenic fish 88
Reference 94

Al-Abd, A.M., Alamoudi, A.J., Abdel-Naim, A.B., Neamatallah, T.A., and Ashour, O.M. (2017). Anti-angiogenic agents for the treatment of solid tumors: Potential pathways, therapy and current strategies - A review. J Adv Res 8, 591-605.
AlAmri, M.A., Kadri, H., Alderwick, L.J., Simpkins, N.S., and Mehellou, Y. (2017). Rafoxanide and Closantel Inhibit SPAK and OSR1 Kinases by Binding to a Highly Conserved Allosteric Site on Their C-terminal Domains. Chemmedchem 12, 639-645.
Alberto C. VITARI, Maria DEAK, Barry J. COLLINS, Nick MORRICE, Alan R. PRESCOTT, Anne PHELAN, HUMPHREYS, S., and ALESSI, a.D.R. (2004). WNK1, the kinase mutated in an inherited high-blood-pressure syndrome, is a novel PKB (protein kinase B)/Akt substrate. Biochemical Journal 378, 257–268.
Andrikopoulos, P., Fraser, S.P., Patterson, L., Ahmad, Z., Burcu, H., Ottaviani, D., Diss, J.K., Box, C., Eccles, S.A., and Djamgoz, M.B. (2011). Angiogenic functions of voltage-gated Na+ Channels in human endothelial cells: modulation of vascular endothelial growth factor (VEGF) signaling. The Journal of biological chemistry 286, 16846-16860.
Barlow, A.M., Sharpe, J.A., and Kincaid, E.A. (2002). Blindness in lambs due to inadvertent closantel overdose. Vet Rec 151, 25-26.
Bergers, G., and Benjamin, L.E. (2003). Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3, 401-410.
Button, C., Jerrett, I., Alexander, P., and Mizon, W. (1987). Blindness in kids associated with overdosage of closantel. Aust Vet J 64, 226.
Chavez, M.N., Aedo, G., Fierro, F.A., Allende, M.L., and Egana, J.T. (2016). Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration. Frontiers in physiology 7.
Choate, K.A., Kahle, K.T., Wilson, F.H., Nelson-Williams, C., and Lifton, R.P. (2003). WNK1, a kinase mutated in inherited hypertension with hyperkalemia, localizes to diverse Cl- -transporting epithelia. Proceedings of the National Academy of Sciences of the United States of America 100, 663-668.
Chou, Y.T., Jiang, J.K., Yang, M.H., Lu, J.W., Lin, H.K., Wang, H.D., and Yuh, C.H. (2018). Identification of a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating beta-catenin via a novel C-terminal domain. PLoS biology 16, e2003714.
Comunanza, V., and Bussolino, F. (2017). Therapy for Cancer: Strategy of Combining Anti-Angiogenic and Target Therapies. Front Cell Dev Biol 5, 101.
Dbouk, H.A., Weil, L.M., Perera, G.K., Dellinger, M.T., Pearson, G., Brekken, R.A., and Cobb, M.H. (2014). Actions of the protein kinase WNK1 on endothelial cells are differentially mediated by its substrate kinases OSR1 and SPAK. Proceedings of the National Academy of Sciences of the United States of America 111, 15999-16004.
Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., and Zeiher, A.M. (1999). Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-605.
Dorwart, M.R., Shcheynikov, N., Wang, Y., Stippec, S., and Muallem, S. (2007). SLC26A9 is a Cl(-) channel regulated by the WNK kinases. The Journal of physiology 584, 333-345.
Ecco, R., de Barros, C.S., Graca, D.L., and Gava, A. (2006). Closantel toxicosis in kid goats. Vet Rec 159, 564-566.
Essabar, L., Meskini, T., Ettair, S., Erreimi, N., and Mouane, N. (2014). Harmful Use of Veterinary Drugs: Blindness Following Closantel Poisoning in a 5-Year-Old Girl. Asia Pacific Journal of Medical Toxicology 3, 173-175.
Fiorio Pla, A., and Munaron, L. (2014). Functional properties of ion channels and transporters in tumour vascularization. Philos Trans R Soc Lond B Biol Sci 369, 20130103.
Fujio, Y., and Walsh, K. (1999). Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. The Journal of biological chemistry 274, 16349-16354.
Gamba, G. (2005). WNK lies upstream of kinases involved in regulation of ion transporters. The Biochemical journal 391, e1-3.
Guo, D., Liang, S., Wang, S., Tang, C., Yao, B., Wan, W., Zhang, H., Jiang, H., Ahmed, A., Zhang, Z., et al. (2016). Role of epithelial Na+ channels in endothelial function. J Cell Sci 129, 290-297.
Hennessy, D.R., and Ali, D.N. (1997). The effect of feed intake level on the pharmacokinetic disposition of closantel in sheep. Int J Parasitol 27, 1081-1086.
Howe, K., Clark, M.D., Torroja, C.F., Torrance, J., Berthelot, C., Muffato, M., Collins, J.E., Humphray, S., McLaren, K., Matthews, L., et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503.
Isogai, S., Horiguchi, M., and Weinstein, B.M. (2001). The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. Developmental biology 230, 278-301.
Isogai, S., Lawson, N.D., Torrealday, S., Horiguchi, M., and Weinstein, B.M. (2003). Angiogenic network formation in the developing vertebrate trunk. Development 130, 5281-5290.
Jeggle, P., Callies, C., Tarjus, A., Fassot, C., Fels, J., Oberleithner, H., Jaisser, F., and Kusche-Vihrog, K. (2013). Epithelial sodium channel stiffens the vascular endothelium in vitro and in Liddle mice. Hypertension 61, 1053-1059.
Kamili, C., Kakataparthy, R.S., Vattikutti, U.M., Chidrawar, V., and Ammineni, S. (2017). Anti-proliferative and anti-angiogenic activities of ion-channel modulators: In-ovo , in-vitro and in-vivo study. Asian Pacific Journal of Tropical Biomedicine 7, 555-562.
Kikuchi, E., Mori, T., Zeniya, M., Isobe, K., Ishigami-Yuasa, M., Fujii, S., Kagechika, H., Ishihara, T., Mizushima, T., Sasaki, S., et al. (2015). Discovery of Novel SPAK Inhibitors That Block WNK Kinase Signaling to Cation Chloride Transporters. Journal of the American Society of Nephrology : JASN 26, 1525-1536.
Kimmel, C.B. (1989). Genetics and early development of zebrafish. Trends Genet 5, 283-288.
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists 203, 253-310.
Kumar, S.B., Narasu, L., Gundla, R., Dayam, R., and J, A.R.P.S. (2013). Fibroblast growth factor receptor inhibitors. Curr Pharm Des 19, 687-701.
Lai, J.G., Tsai, S.M., Tu, H.C., Chen, W.C., Kou, F.J., Lu, J.W., Wang, H.D., Huang, C.L., and Yuh, C.H. (2014). Zebrafish WNK lysine deficient protein kinase 1 (wnk1) affects angiogenesis associated with VEGF signaling. PloS one 9, e106129.
Lal, B.K., Varma, S., Pappas, P.J., Hobson, R.W., 2nd, and Duran, W.N. (2001). VEGF increases permeability of the endothelial cell monolayer by activation of PKB/akt, endothelial nitric-oxide synthase, and MAP kinase pathways. Microvasc Res 62, 252-262.
Lawson, N.D., and Weinstein, B.M. (2002). In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish. Developmental biology 248, 307-318.
Li, B., and Xiu, R. (2013). Angiogenesis: from molecular mechanisms to translational implications. Clin Hemorheol Microcirc 54, 345-355.
Lu, J.W., Yang, W.Y., Tsai, S.M., Lin, Y.M., Chang, P.H., Chen, J.R., Wang, H.D., Wu, J.L., Jin, S.L., and Yuh, C.H. (2013). Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PloS one 8, e76951.
Martial, S. (2016). Involvement of ion channels and transporters in carcinoma angiogenesis and metastasis. American journal of physiology Cell physiology 310, C710-727.
Masckauchan, T.N., Shawber, C.J., Funahashi, Y., Li, C.M., and Kitajewski, J. (2005). Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis 8, 43-51.
Matsuda, Y., Hagio, M., and Ishiwata, T. (2013). Nestin: a novel angiogenesis marker and possible target for tumor angiogenesis. World J Gastroenterol 19, 42-48.
Matsumoto, K., and Ema, M. (2014). Roles of VEGF-A signalling in development, regeneration, and tumours. J Biochem 156, 1-10.
Michell, B.J., Griffiths, J.E., Mitchelhill, K.I., Rodriguez-Crespo, I., Tiganis, T., Bozinovski, S., de Montellano, P.R., Kemp, B.E., and Pearson, R.B. (1999). The Akt kinase signals directly to endothelial nitric oxide synthase. Current biology : CB 9, 845-848.
Moniz, S., and Jordan, P. (2010). Emerging roles for WNK kinases in cancer. Cellular and molecular life sciences : CMLS 67, 1265-1276.
Montesano, R., Vassalli, J.D., Baird, A., Guillemin, R., and Orci, L. (1986). Basic fibroblast growth factor induces angiogenesis in vitro. Proceedings of the National Academy of Sciences of the United States of America 83, 7297-7301.
Mori, T., Kikuchi, E., Watanabe, Y., Fujii, S., Ishigami-Yuasa, M., Kagechika, H., Sohara, E., Rai, T., Sasaki, S., and Uchida, S. (2013). Chemical library screening for WNK signalling inhibitors using fluorescence correlation spectroscopy. The Biochemical journal 455, 339-345.
Muller, P.Y., and Milton, M.N. (2012). The determination and interpretation of the therapeutic index in drug development. Nat Rev Drug Discov 11, 751-761.
Murakami, M., Elfenbein, A., and Simons, M. (2008). Non-canonical fibroblast growth factor signalling in angiogenesis. Cardiovasc Res 78, 223-231.
Oberleithner, H., Riethmuller, C., Ludwig, T., Shahin, V., Stock, C., Schwab, A., Hausberg, M., Kusche, K., and Schillers, H. (2006). Differential action of steroid hormones on human endothelium. J Cell Sci 119, 1926-1932.
Oberleithner, H., Schneider, S.W., Albermann, L., Hillebrand, U., Ludwig, T., Riethmuller, C., Shahin, V., Schafer, C., and Schillers, H. (2003). Endothelial cell swelling by aldosterone. J Membr Biol 196, 163-172.
Obwolo, M.J., Odiawo, G.O., and Ogaa, J.S. (1989). Toxicity of a closantel-albendazole mixture in a flock of sheep and goats. Aust Vet J 66, 229-230.
Parng, C., Seng, W.L., Semino, C., and McGrath, P. (2002). Zebrafish: a preclinical model for drug screening. Assay Drug Dev Technol 1, 41-48.
Remmele, W., and Stegner, H.E. (1987). [Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue]. Pathologe 8, 138-140.
Roberts, O.L., Holmes, K., Muller, J., Cross, D.A., and Cross, M.J. (2009). ERK5 and the regulation of endothelial cell function. Biochemical Society transactions 37, 1254-1259.
Rodan, A.R., and Jenny, A. (2017). WNK Kinases in Development and Disease. Curr Top Dev Biol 123, 1-47.
Roman, B.L., Pham, V.N., Lawson, N.D., Kulik, M., Childs, S., Lekven, A.C., Garrity, D.M., Moon, R.T., Fishman, M.C., Lechleider, R.J., et al. (2002). Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129, 3009-3019.
Serysheva, E., Berhane, H., Grumolato, L., Demir, K., Balmer, S., Bodak, M., Boutros, M., Aaronson, S., Mlodzik, M., and Jenny, A. (2013). Wnk kinases are positive regulators of canonical Wnt/beta-catenin signalling. EMBO reports 14, 718-725.
Tabatabaei, S.A., Soleimani, M., Mansouri, M.R., Mirshahi, A., Inanlou, B., Abrishami, M., Pakrah, A.R., and Masarat, H. (2016). Closantel; a veterinary drug with potential severe morbidity in humans. BMC Ophthalmol 16, 207.
Thastrup, J.O., Rafiqi, F.H., Vitari, A.C., Pozo-Guisado, E., Deak, M., Mehellou, Y., and Alessi, D.R. (2012). SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation. The Biochemical journal 441, 325-337.
Tobia, C., De Sena, G., and Presta, M. (2011). Zebrafish embryo, a tool to study tumor angiogenesis. Int J Dev Biol 55, 505-509.
Tobia, C., Gariano, G., De Sena, G., and Presta, M. (2013). Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk. Bba-Mol Basis Dis 1832, 1371-1377.
Tseng, P.H., Wang, H.D., and Yuh, C.H. (2015). Identification of two novel small compounds with anti-angiogenesis, anti-proliferation and anti-migration for liver cancer model in zebrafish platform. Master's Thesis of Institude of Biotechnology, National Tsing Hwa University, 59 pp.
Vasudev, N.S., and Reynolds, A.R. (2014). Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis 17, 471-494.
Veinotte, C.J., Dellaire, G., and Berman, J.N. (2014). Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Dis Model Mech 7, 745-754.
Verissimo, F., and Jordan, P. (2001). WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene 20, 5562-5569.
Vitari, A.C., Deak, M., Morrice, N.A., and Alessi, D.R. (2005). The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. The Biochemical journal 391, 17-24.
Vitari, A.C., Thastrup, J., Rafiqi, F.H., Deak, M., Morrice, N.A., Karlsson, H.K., and Alessi, D.R. (2006). Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1. The Biochemical journal 397, 223-231.
Wang, H.R., Liu, Z., and Huang, C.L. (2008). Domains of WNK1 kinase in the regulation of ROMK1. American journal of physiology Renal physiology 295, F438-445.
Wang, S., Meng, F., Mohan, S., Champaneri, B., and Gu, Y. (2009). Functional ENaC channels expressed in endothelial cells: a new candidate for mediating shear force. Microcirculation 16, 276-287.
Wang, Y., Li, L., Fan, J., Dai, Y., Jiang, A., Geng, M., Ai, J., and Duan, W. (2018). Discovery of Potent Irreversible Pan-Fibroblast Growth Factor Receptor (FGFR) Inhibitors. J Med Chem.
Weis, S.M., and Cheresh, D.A. (2011). Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17, 1359-1370.
Wilson, F.H., Disse-Nicodeme, S., Choate, K.A., Ishikawa, K., Nelson-Williams, C., Desitter, I., Gunel, M., Milford, D.V., Lipkin, G.W., Achard, J.M., et al. (2001). Human hypertension caused by mutations in WNK kinases. Science 293, 1107-1112.
Xie, J., Wu, T., Xu, K., Huang, I.K., Cleaver, O., and Huang, C.L. (2009). Endothelial-specific expression of WNK1 kinase is essential for angiogenesis and heart development in mice. The American journal of pathology 175, 1315-1327.
Xie, J., Yoon, J., Yang, S.S., Lin, S.H., and Huang, C.L. (2013). WNK1 protein kinase regulates embryonic cardiovascular development through the OSR1 signaling cascade. The Journal of biological chemistry 288, 8566-8574.
Xu, B.E., English, J.M., Wilsbacher, J.L., Stippec, S., Goldsmith, E.J., and Cobb, M.H. (2000). WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. The Journal of biological chemistry 275, 16795-16801.
Xu, B.E., Stippec, S., Chu, P.Y., Lazrak, A., Li, X.J., Lee, B.H., English, J.M., Ortega, B., Huang, C.L., and Cobb, M.H. (2005a). WNK1 activates SGK1 to regulate the epithelial sodium channel. Proceedings of the National Academy of Sciences of the United States of America 102, 10315-10320.
Xu, B.E., Stippec, S., Lazrak, A., Huang, C.L., and Cobb, M.H. (2005b). WNK1 activates SGK1 by a phosphatidylinositol 3-kinase-dependent and non-catalytic mechanism. The Journal of biological chemistry 280, 34218-34223.
Xu, B.E., Stippec, S., Lenertz, L., Lee, B.H., Zhang, W., Lee, Y.K., and Cobb, M.H. (2004). WNK1 activates ERK5 by an MEKK2/3-dependent mechanism. The Journal of biological chemistry 279, 7826-7831.
Yamada, K., Park, H.M., Rigel, D.F., DiPetrillo, K., Whalen, E.J., Anisowicz, A., Beil, M., Berstler, J., Brocklehurst, C.E., Burdick, D.A., et al. (2016a). Small-molecule WNK inhibition regulates cardiovascular and renal function. Nature chemical biology 12, 896-898.
Yamada, K., Zhang, J.H., Xie, X., Reinhardt, J., Xie, A.Q., LaSala, D., Kohls, D., Yowe, D., Burdick, D., Yoshisue, H., et al. (2016b). Discovery and Characterization of Allosteric WNK Kinase Inhibitors. ACS Chem Biol 11, 3338-3346.
Yang, C.-L., Zhu, X., Wang, Z., Subramanya, A.R., and Ellison, D.H. (2005). Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport. Journal of Clinical Investigation 115, 1379-1387.
Yang, W.H., Xu, J., Mu, J.B., and Xie, J. (2017). Revision of the concept of anti-angiogenesis and its applications in tumor treatment. Chronic Dis Transl Med 3, 33-40.
Yaniv, K., Isogai, S., Castranova, D., Dye, L., Hitomi, J., and Weinstein, B.M. (2006). Live imaging of lymphatic development in the zebrafish. Nat Med 12, 711-716.
Yaya Zhou, Wei Sun , Ning Chen, Chen Xu, Xinxin Wang , Kun Dong Zhang, Jian Zhang, Ning Hao, Aihua Sun, Handong Wei, et al. (2017). Discovery of NKCC1 as a potential therapeutic target to inhibit hepatocellular carcinoma cell growth and metastasis.pdf. Oncotarget 8, 66328-66342.
Zachary, I. (2014). Neuropilins: role in signalling, angiogenesis and disease. Chem Immunol Allergy 99, 37-70.
Zambrowicz, B.P., Abuin, A., Ramirez-Solis, R., Richter, L.J., Piggott, J., BeltrandelRio, H., Buxton, E.C., Edwards, J., Finch, R.A., Friddle, C.J., et al. (2003). Wnk1 kinase deficiency lowers blood pressure in mice: a gene-trap screen to identify potential targets for therapeutic intervention. Proceedings of the National Academy of Sciences of the United States of America 100, 14109-14114.
Zhang, B.B., Xuan, C., Ji, Y.X., Zhang, W.M., and Wang, D.G. (2015). Zebrafish xenotransplantation as a tool for in vivo cancer study. Fam Cancer 14, 487-493.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *