帳號:guest(18.118.217.197)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡敏雄
作者(外文):Tsai, Min-Hsiung
論文名稱(中文):醣化台灣眼鏡蛇毒5端核苷酸水解酶的結構與活性探討
論文名稱(外文):The structure and function of N-glycosylation in 5'-nucleotidase (V5NTD) from Taiwan cobra (Naja atra)
指導教授(中文):吳文桂
指導教授(外文):Wu, Wen-Guey
口試委員(中文):簡昆鎰
吳柏龍
口試委員(外文):Chien, Kun-Yi
Wu, Po-Long
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:105080547
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:68
中文關鍵詞:台灣眼鏡蛇5端核苷酸水解酶核甘單磷酸醣基化
外文關鍵詞:NajaCobra5'-nucleotidaseAdenosine monophosphateN-glycosylation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:25
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
5端核苷酸水解酶在所有毒蛇中具有水解核甘單磷酸形成腺苷和磷酸的高分子量的醣蛋白,從結構和功能比對發現和人類的CD73有相似性猜測5端核苷酸在抑制免疫系統中扮演特定角色,然而在不同毒蛇5端核苷酸的N端糖基化與結構以及功能並沒有了解清楚。在我們研究中,比較5端核苷酸的比例與活性在三種眼鏡蛇和兩種出血性的毒蛇,發現台灣眼鏡蛇含0.23%的5端水解酶而且活性最高,利用質譜和X繞射鑑定出台灣眼鏡蛇5端核苷酸上的醣蛋白,發現有四個N端的糖(N311, N333, N347和N518),之後使用切醣試劑移除5端水解酶醣並且探討酵素活性,發現親和力有明顯的影響,另外,找到有效抑制劑AMPCP可抑制5端水解酶的活性,基於這些研究中,我們推測這個抑制劑減少5端水解酶活性,也許可幫助被蛇毒藥咬傷的受害者,爾後可當作相關藥物治療。
V5NTD, or known as 5’-nucleotidase, is a high molecular weight glycoprotein found in venom of all snake species and has the ability to hydrolyze extracellular AMP (adenosine monophosphate) to adenosine and Pi. It presumably plays a role in inhibiting immune response similar to human V5NTD (CD73) as they share similar overall protein fold with the same 3D structure at the active site. The relative amount of V5NTD in different snake venoms and the structure and function of its N-glycosylation, however, are not well understood. In this study, we first compare the venom content and activity of V5NTD from three cobra species of N. atra, N. kaouthia and N. nivea and two viper species of T. mucrosquamatus and D. acutus. The highest enzymatic activity is found in the crude venom of N. atra with the presence of ~ 0.23% w/w of V5NTD. We then apply both MASS spectrometry and X-ray diffraction method to identify the four glycan structures of V5NTD from N. atra and study their effect on its enzyme kinetics by treating with Endo F3. The results indicate that the N-glycan structures at N311, N333, N347 and N518 are mainly of complex type and exhibit different degree of structural dynamics. Removing all N-glycans from V5NTD has delicate, but small, effect on its enzyme kinetics. We also find that V5NTD can be effectively inhibited by AMPCP (adenosine 5’(-methylene) diphosphate) at sub-mM concentration range. Based on these observations, we suggest that the inhibition of V5NTD activity at the bitten tissue area may help the wound healing process of the victims suffering from snakebite.
Chapter 1 Introduction
1.1 Snake venom proteomes………………………………………………………...............…..3
1.2 5’-nucleotidase in Naja atra (Taiwan cobra)…………………………………........…..4
1.3 N-link glycosylation…...................................................................................5
1.4 Protein purification……………………………………………………………….....................6
1.5 Enzyme kinetics ………………………………………………………………....................…..7
Chapter 2 Materials and Methods
2.1 Materials………………………………………………………………………...........................…14
2.2 Compare total amount of 5’-nucleotidase in snake venom…………………...….14
2.3 Crude venom assay with AMP…………………………………………………...................15
2.4 Purification of 5’-nucleotidase from Taiwan cobra (Naja atra) venom………..15
2.5 5’-nucleotidase crystallization…………………………………………………................…17
2.6 5’-nucleotidase data collection, structure determination and refinement…..17
2.7 5’-nucleotidase kinetic assay with AMP….…………………………….......................18
2.8 5’-nucleotidase inhibition assay………………………………………………................….18
2.9 DeN-glycosylated of V5NTD hydrolyzing AMP………………………………..............19
2.10 Identification of V5NTD N-glycosylation sites……………………………….............19
Chapter 3 Results
3.1 Identification of the HMW from snake venom………………………………….............20
3.2 Snake venom activity with AMP…………………………………………………..................20
3.3 Purification of the V5NTD from Naja atra…….......………………………..................21
3.4 V5NTD crystal and data collection……………………………………………................…22
3.5 V5NTD enzyme by using AMP as a substrate……………………………….............…23
3.6 V5NTD inhibition with AMPCP……………………………………………….....................…23
3.7 DeN-glycosylated of V5NTD activity with AMP……………………………...........…...24
3.8 V5NTD N-glycosylation sites….……….............…………………………..................….24
Chapter 4 Discussion……………………………………………………….......................………...50
Conclusion……………………………………………………………………............................……....60
Reference…………………………………………………………………….............................………..61
Aizpurua-Olaizola, O., Sastre Toraño, J., Falcon-Perez, J. M., Williams, C., Reichardt, N., & Boons, G. J. (2018). Mass spectrometry for glycan biomarker discovery. TrAC Trends in Analytical Chemistry, 100, 7-14. doi: 10.1016/j.trac.2017.12.015
Allard, B., Beavis, P. A., Darcy, P. K., & Stagg, J. (2016). Immunosuppressive activities of adenosine in cancer. Curr Opin Pharmacol, 29, 7-16. doi: 10.1016/j.coph.2016.04.001
Allard, B., Longhi, M. S., Robson, S. C., & Stagg, J. (2017). The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol Rev, 276(1), 121-144. doi: 10.1111/imr.12528
Allard, B., Turcottee, M., & Stagg, J. (2014). Targeting CD73 and downstream adenosine receptor signaling in triple-negative breast cancer Expert Opinion on Therapeutic Targets, 18(8), 863-881. doi: 10.1517/14728222.2014.915315
An, H. J., Peavvy, T. R., & Hedrich. (2003). Determination of N-Glycosylation Sites and Site Heterogeneity in Glycoproteins. Anal. Chem., 75(20), 5628-5637. doi: 10.1021/ac034414x
Arun, R., Arafat, A. S., D'Souza, C. J., Sivaramakrishnan, V., & Dhananjaya, B. L. (2014). Vanillin analog--vanillyl mandelic acid, a novel specific inhibitor of snake venom 5'-nucleotidase. Arch Pharm (Weinheim), 347(9), 616-623. doi: 10.1002/ardp.201400069
Bennacef-Heffar, N., & Laraba-Djebari, F. (2017). Beneficial effects of Heparin and l Arginine on dermonecrosis effect induced by Vipera lebetina venom: Involvement of NO in skin regeneration. Acta Trop, 171, 226-232. doi: 10.1016/j.actatropica.2017.04.012
Bogan, K. L., & Brenner, C. (2010). 5′-Nucleotidases and their new roles in NAD+ and phosphate metabolism. New Journal of Chemistry, 34(5), 845. doi: 10.1039/b9nj00758j
Braunger, K., Pfeffer, S., Gilmore, R., Berninghausen, O., Mandom, E. C., Becker, T., . . . Beckmann, R. (2018). Structural basis for coupling protein transport and N-glycosylation at the mammalian endoplasmic reticulum Science, 360(6385), 215-219. doi: 10.1126/science.aar7899
Chen, T. S., Chung, F. Y., Tjong, S. C., Goh, K. S., Huang, H. W., Chien, K. Y., . . . Wu, W. G. (2005). Structural Difference between Group I and Group II Cobra Cardiotoxins- X-ray, NMR, and CD Analysis of the Effect of cis-Proline Conformation on Three-Fingered Toxins. Biochemistry, 44, 7414-7426. doi: 10.1021/bi050172e
Dhananjaya, B. L., Nataraju, A., Raghavendra Gowda, C. D., Sharath, B. K., & D’souza, C. J. M. (2010). Vanillic acid as a novel specific inhibitor of snake venom 5′-nucleotidase: A pharmacological tool in evaluating the role of the enzyme in snake envenomation. Biochemistry (Moscow), 74(12), 1315-1319. doi: 10.1134/s0006297909120037
Gowda, R., Rajaiah, R., Angaswamy, N., Krishna, S., & Bannikuppe Sannanayak, V. (2018). Biochemical and pharmacological characterization of Trimersurus malabaricus snake venom. J Cell Biochem, 119(7), 5904-5912. doi: 10.1002/jcb.26782
Gulland, J. M., & Jackson, E. M. (1938). LXXVIII. 5-NUCLEOTIDASE. Biochem J., 32(3), 597-601.
Hart, M. L., Kohler, D., Eckle, T., Kloor, D., Stahl, G. L., & Eltzschig, H. K. (2008). Direct treatment of mouse or human blood with soluble 5'-nucleotidase inhibits platelet aggregation. Arterioscler Thromb Vasc Biol, 28(8), 1477-1483. doi: 10.1161/ATVBAHA.108.169219
Hasko, G., Antonioli, L., & Cronstein, B. N. (2018). Adenosine metabolism, immunity and joint health. Biochem Pharmacol, 151, 307-313. doi: 10.1016/j.bcp.2018.02.002
Hesse, J., Leberling, S., Boden, E., Friebe, D., Schmidt, T., Ding, Z., . . . Schrader, J. (2017). CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction. FASEB J, 31(7), 3040-3053. doi: 10.1096/fj.201601307R
Heuts, D. P., Weissenborn, M. J., Olkhov, R. V., Shaw, A. M., Gummadova, J., Levy, C., & Scrutton, N. S. (2012). Crystal structure of a soluble form of human CD73 with ecto-5'-nucleotidase activity. Chembiochem, 13(16), 2384-2391. doi: 10.1002/cbic.201200426
Huang, H. W., Liu, B. S., Chien, K. Y., Chiang, L. C., Huang, S. Y., Sung, W. C., & Wu, W. G. (2015). Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics, 128, 92-104. doi: 10.1016/j.jprot.2015.07.015
Kalita, B., Patra, A., Jahan, S., & Mukherjee, A. K. (2018). First report of the characterization of a snake venom apyrase (Ruviapyrase) from Indian Russell's viper (Daboia russelii) venom. Int J Biol Macromol, 111, 639-648. doi: 10.1016/j.ijbiomac.2018.01.038
Knapp, K., Zebisch, M., Pippel, J., El-Tayeb, A., Muller, C. E., & Strater, N. (2012). Crystal structure of the human ecto-5'-nucleotidase (CD73): insights into the regulation of purinergic signaling. Structure, 20(12), 2161-2173. doi: 10.1016/j.str.2012.10.001
Kulikova, V., Shabalin, K., Nerinovski, K., Dolle, C., Niere, M., Yakimov, A., . . . Nikiforov, A. (2015). Generation, Release, and Uptake of the NAD Precursor Nicotinic Acid Riboside by Human Cells. J Biol Chem, 290(45), 27124-27137. doi: 10.1074/jbc.M115.664458
Laustsen, A. H., Gutierrez, J. M., Lohse, B., Rasmussen, A. R., Fernandez, J., Milbo, C., & Lomonte, B. (2015). Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon, 99, 23-35. doi: 10.1016/j.toxicon.2015.03.001
Leone, R. D., Lo, Y. C., & Powell, J. D. (2015). A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy. Comput Struct Biotechnol J, 13, 265-272. doi: 10.1016/j.csbj.2015.03.008
Liu, C. C., Lin, C. C., Hsiao, Y. C., Wang, P. J., & Yu, J. S. (2018). Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. J Proteomics. doi: 10.1016/j.jprot.2018.06.003
McManus, J., He, T., Gavigan, J. A., Marchand, G., Vougier, S., Bedel, O., . . . Deng, G. (2018). A Robust Multiplex Mass Spectrometric Assay for Screening Small-Molecule Inhibitors of CD73 with Diverse Inhibition Modalities. SLAS Discov, 23(3), 264-273. doi: 10.1177/2472555217750386
Michaelis, L., Menten, M. L., Johnson, K. A., & Goody, R. S. (2011). The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry, 50(39), 8264-8269. doi: 10.1021/bi201284u
Miliutina, M., Janke, J., Hassan, S., Zaib, S., Iqbal, J., Lecka, J., . . . Langer, P. (2018). A domino reaction of 3-chlorochromones with aminoheterocycles. Synthesis of pyrazolopyridines and benzofuropyridines and their optical and ecto-5'-nucleotidase inhibitory effects. Org Biomol Chem, 16(5), 717-732. doi: 10.1039/c7ob02729j
Mohorko, E., Glockshuber, R., & Aebi, M. (2011). Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis, 34(4), 869-878. doi: 10.1007/s10545-011-9337-1
Oliveira, I. S., Cardoso, I. A., Bordon, K. C. F., Carone, S. E. I., Boldrini-Franca, J., Pucca, M. B., . . . Arantes, E. C. (2018). Global proteomic and functional analysis of Crotalus durissus collilineatus individual venom variation and its impact on envenoming. J Proteomics. doi: 10.1016/j.jprot.2018.02.020
Prezoto, B. C., Tanaka-Azevedo, A. M., Marcelino, J. R., Tashima, A. K., Nishiduka, E. S., Kapronezai, J., . . . Oguiura, N. (2018). A functional and thromboelastometric-based micromethod for assessing crotoxin anticoagulant activity and antiserum relative potency against Crotalus durissus terrificus venom. Toxicon, 148, 26-32. doi: 10.1016/j.toxicon.2018.04.009
Raza, R., Saeed, A., Lecka, J., Sevigny, J., & Iqbal, J. (2012). Identification of Small Molecule Sulfonic Acids as Ecto-5'-Nucleotidase Inhibitors. Medicinal Chemistry, 8(6), 1133-1139. doi: 10.2174/157340612804075241
Saoud, S., Cherifi, F., Benhassine, T., & Laraba-Djebari, F. (2017). Purification and characterization of a platelet aggregation inhibitor and anticoagulant Cc 5_NTase, CD 73-like, from Cerastes cerastes venom. J Biochem Mol Toxicol, 31(5). doi: 10.1002/jbt.21885
Shan, L. L., Gao, J. F., Zhang, Y. X., Shen, S. S., He, Y., Wang, J., . . . Ji, X. (2016). Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. J Proteomics, 138, 83-94. doi: 10.1016/j.jprot.2016.02.028
Stagg, J. (2012). The double-edge sword effect of anti-CD73 cancer therapy. Oncoimmunology, 1(2), 217-218. doi: 10.4161/onci.1.2.18101
Stagg, J., Divisekera, U., McLaughlin, N., Sharkey, J., Pommey, S., Denoyer, D., . . . Smyth, M. J. (2010). Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis. Proc Natl Acad Sci U S A, 107(4), 1547-1552. doi: 10.1073/pnas.0908801107
Sun, S., & Zhang, H. (2015). Identification and Validation of Atypical N-Glycosylation Sites. Anal Chem, 87(24), 11948-11951. doi: 10.1021/acs.analchem.5b03886
Tan, K. Y., Tan, C. H., Fung, S. Y., & Tan, N. H. (2015). Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics, 120, 105-125. doi: 10.1016/j.jprot.2015.02.012
Tasoulis, T., & Isbister, G. K. (2017). A Review and Database of Snake Venom Proteomes. Toxins (Basel), 9(9). doi: 10.3390/toxins9090290
Trummal, K., Samel, M., Aaspollu, A., Tonismagi, K., Titma, T., Subbi, J., . . . Siigur, E. (2015). 5'-Nucleotidase from Vipera lebetina venom. Toxicon, 93, 155-163. doi: 10.1016/j.toxicon.2014.11.234
Valette, O., Tran, T. T. T., Cavazza, C., Caudeville, E., Brasseur, G., Dolla, A., . . . Pieulle, L. (2017). Biochemical Function, Molecular Structure and Evolution of an Atypical Thioredoxin Reductase from Desulfovibrio vulgaris. Front Microbiol, 8, 1855. doi: 10.3389/fmicb.2017.01855
van de Bovenkamp, F. S., Derksen, N. I. L., Ooijevaar-de Heer, P., van Schie, K. A., Kruithof, S., Berkowska, M. A., . . . Rispens, T. (2018). Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc Natl Acad Sci U S A, 115(8), 1901-1906. doi: 10.1073/pnas.1711720115
Wang, R., Zhang, Y. X., Lin, X., Gao, Y., & Zhu, Y. (2017). Prognositic value of CD73-adenosinergic pathway in solid tumor. Oncotarget, 8(34), 57327-57336. doi: 10.18632/oncotarget.16905
Wang, X., & Chen, D. (2018). Purinergic Regulation of Neutrophil Function. Front Immunol, 9, 399. doi: 10.3389/fimmu.2018.00399
Wild, R., Kowal, J., Eyring, J., Ngwa, E. M., Aebi, M., & Locher, K. P. (2018). Structure of the yeast oligosaccharyltransferase complex gives insight into eukaryotic N-glycosylation. Science. doi: 10.1126/science.aar5140(2018)
Yu, J., Wang, X., Lu, Q., Wang, J., Li, L., Liao, X., . . . Zhou, P. (2018). Extracellular 5'-nucleotidase (CD73) promotes human breast cancer cells growth through AKT/GSK-3beta/beta-catenin/cyclinD1 signaling pathway. Int J Cancer, 142(5), 959-967. doi: 10.1002/ijc.31112
Zainal Abidin, S. A., Rajadurai, P., Chowdhury, M. E., Ahmad Rusmili, M. R., Othman, I., & Naidu, R. (2016). Proteomic Characterization and Comparison of Malaysian Tropidolaemus wagleri and Cryptelytrops purpureomaculatus Venom Using Shotgun-Proteomics. Toxins (Basel), 8(10). doi: 10.3390/toxins8100299
Zhang, L., Han, B., Li, R., Lu, X., Nie, A., Guo, L., . . . Li, J. (2014). Comprehensive identification of novel proteins and N-glycosylation sites in royal jelly. BMC Genomics, 15(135). doi: 10.1186/1471-2164-15-135
Zukowska, P., Kutryb-Zajac, B., Toczek, M., Smolenski, R. T., & Slominska, E. M. (2015). The role of ecto-5'-nucleotidase in endothelial dysfunction and vascular pathologies. Pharmacol Rep, 67(4), 675-681. doi: 10.1016/j.pharep.2015.05.002
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *