帳號:guest(3.15.192.196)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林庭伃
作者(外文):Lin, Ting-Yu
論文名稱(中文):人類組蛋白去甲基酵素KDM4B在抗去勢前列腺癌之代謝適應上扮演關鍵的角色
論文名稱(外文):Histone demethylase KDM4B is crucial for metabolic adaptation of castration-resistant prostate cancer
指導教授(中文):王雯靜
指導教授(外文):Wang, Wen-Ching
口試委員(中文):藍忠昱
陳怡榮
王鴻俊
王慧菁
口試委員(外文):Lan, Chung-Yu
Chen, Yi-Rong
Wang, Hong-Jun
Wang, Hui-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:105080545
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:57
中文關鍵詞:人類組蛋白去甲基酵素抗去勢前列腺癌代謝適應
外文關鍵詞:Histone demethylaseKDM4Bmetabolic adaptationcastration-resistant prostate cancer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:628
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今針對前期攝護腺癌患者的治療,通常以根除性攝護腺切除術以及賀爾蒙治療法為主,其中95%的患者可痊癒。然而,其餘患者有機率復發,並且對賀爾蒙治療產生抗性而形成去勢性攝護腺癌 (CRPC),三年內死亡率高達77%。去勢性攝護腺癌的分子進程源自於遺傳或表觀遺傳的改變。近年來,人們開始高度關注人類組蛋白離胺酸特異性去甲基化酶 (KDM4B)在癌症中扮演的角色,其主要針對H3K9以及H3K36兩個位置的雙甲基或三甲基去甲基化。在本研究中,KDM4B的降減會造成糖解能力下降但是粒線體氧化能力的提升。代謝基因組學的分析中也可以看到,KDM4B的降減會使麩醯胺酸和氧化型麩胱甘肽的總產量上升,麩胺酸和谷胱甘肽的產量下降。這些結果可以表達,當攝護腺癌細胞中的KDM4B被降減之後,葡萄糖的代謝途徑可能從無氧糖解轉為氧化磷酸化途徑。而作為編碼轉錄因子的調節基因,c-Myc在能量的代謝途徑中扮演很重要的角色。由過去的文獻指出,它會直接調控乳酸脫氫酶 (LDHA)的基因表現,同時當KDM4B被降減時,LDHA的mRNA表現量也下降了。因此我們推斷KDM4B和c-Myc有關連,從免疫沉澱法的實驗結果可以證明兩者會結合在一起。接著,利用報導基因冷光活性試驗(promoter reporter assay),也證實KDM4B會加強c-Myc對LDHA啟動子的活性表現。由這些實驗結果,我們推斷KDM4B擔任c-Myc的共激活因子,共同調控CRPC的代謝適應。
The standard treatment for initial-stage androgen-dependent prostate cancer (PCa) patients is androgen deprivation therapy (ADT). However, castration-resistant prostate cancer (CRPC) inevitably occurs within 2-3 years after ADT and causes about 77% deaths within 3 years (1). The molecular evolution of CRPC arises from complicated genetic/epigenetic alterations. Recently, the role of histone lysine-specific demethylase KDM4B/JMJD2B which targets H3K9me2/me3, H3K36me2/me3 in CRPC has drawn much attention. Here, we show that the depletion of KDM4B resulted in downregulation of glucose metabolism whereas upregulation of mitochondria oxidation. Metabolomic analysis of KDM4B-knockdown cells revealed a reduced level of glutamate and glutathione but increased level of glutamine and oxidative glutathione as compared with that of the control groups. These results suggest that KDM4B-knockdown cells shifted from aerobic glycolysis to oxidative mitochondrial metabolism. c-Myc, an important regulator of energy metabolism that drives the expression of lactate dehydrogenase A (LDHA) was also downregulated in KDM4B-knockdown cells (2). Accordingly, there was a significantly reduced level of LDHA expression after the depletion of KDM4B. Immunoprecipitation experiments revealed that KDM4B physically interacted with c-Myc. Additionally, KDM4B and c-Myc synergistically enhanced the LDHA promoter transcriptional activity. Taken together, our results suggest that KDM4B functions as a c-Myc coactivator to regulate CRPC metabolic adaptation.

人類組蛋白去甲基酵素KDM4B在抗去勢前列腺癌之代謝適應上扮演關鍵的角色........i
中文摘要..........................................................ii
Abstract.........................................................iii
Abbreviation.....................................................iv
1 Introduction..................................................5
1.1 About prostate cancer........................................5
1.2 Symptoms, diagnose and therapy of prostate cancer............5
1.3 Androgen receptor............................................6
1.4 The progression of castration-resistance prostate cancer.....6
1.5 The mechanism and therapy of CRPC............................7
1.6 Epigenetic regulation........................................8
1.7 JMJD2/KDM4 subfamily and KDM4B...............................9
1.8 The role of c-Myc in metabolic adaptation....................9
1.9 Purpose of this research.....................................10
1.10 Warburg effect and cancer proliferation.....................11
2 Material and methods..........................................12
2.1 Cell culture.................................................12
2.2 Lentivirus production and knockdown cell lines establishment .................................................................12
2.3 Cell viability test..........................................12
2.4 RNA extraction...............................................13
2.5 qRT-PCR......................................................14
2.6 Immunoprecipitation and Immunoblotting.......................14
2.7 OCR and ECAR.................................................15
2.8 Lactate production and PDH activity..........................16
2.9 Luciferase assay.............................................17
2.10 ChIP assay..................................................17
2.11 Fluorescence image assay....................................18
2.12 Statistical analysis........................................18
3 Results.......................................................20
3.1 A reduced level of the glycolytic flux after the depletion of KMD4B............................................................20
3.2 Knockdown of KDM4B induces mitochondrial oxidative phosphorylation .................................................................20
3.3 KDM4B modulates the energetic metabolism.....................21
3.4 KDM4B associates with c-Myc..................................22
3.5 KDM4B is crucial for c-Myc-regulated LDHA transactivation activity.........................................................23
3.6 Both KDM4B and c-Myc are recruited to the LDHA loci..........24
3.7 M2 acts as a KDM4B inhibitor and suppresses CRPC.............24
3.8 M2 and enzalutamide or abiraterone acetate synergistically inhibit the survival of CRPC cells.......................................25
4. Conclusion and discussion....................................27
4.1 KDM4B and c-Myc co-regulate metabolic pathway in CRPC........27
4.2 M2 inhibits KDM4B and enhances treatment of enzalutamide and abiraterone acetate..............................................29
4.3 The role of KDM4B in other CRPC and drug resistant cell lines needs to be confirmed............................................30
5. Reference....................................................31
1. Humphreys MR, Fernandes KA, & Sridhar SS (2013) Impact of Age at Diagnosis on Outcomes in Men with Castrate-Resistant Prostate Cancer (CRPC). J Cancer 4(4):304-314.
2. Shim H, et al. (1997) c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc. Natl. Acad. Sci. U. S. A. 94(13):6658-6663.
3. Oesterling JE, Martin SK, Bergstralh EJ, & Lowe FC (1993) The use of prostate-specific antigen in staging patients with newly diagnosed prostate cancer. JAMA 269(1):57-60.
4. Haas GP, Delongchamps N, Brawley OW, Wang CY, & de la Roza G (2008) The worldwide epidemiology of prostate cancer: perspectives from autopsy studies. Can J Urol 15(1):3866-3871.
5. Catalona WJ (2018) Prostate Cancer Screening. Med Clin North Am 102(2):199-214.
6. Barry MJ, et al. (2001) Outcomes for men with clinically nonmetastatic prostate carcinoma managed with radical prostactectomy, external beam radiotherapy, or expectant management: a retrospective analysis. Cancer 91(12):2302-2314.
7. Sharifi N, Gulley JL, & Dahut WL (2005) Androgen deprivation therapy for prostate cancer. JAMA 294(2):238-244.
8. Scher HI, et al. (2008) Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J Clin Oncol 26(7):1148-1159.
9. Lonergan PE & Tindall DJ (2011) Androgen receptor signaling in prostate cancer development and progression. J Carcinog 10:20.
10. Leibowitz-Amit R & Joshua AM (2012) Targeting the androgen receptor in the management of castration-resistant prostate cancer: rationale, progress, and future directions. Curr Oncol 19(Suppl 3):S22-31.
11. Meehan KL & Sadar MD (2003) Androgens and androgen receptor in prostate and ovarian malignancies. Front Biosci 8:d780-800.
12. Dutt SS & Gao AC (2009) Molecular mechanisms of castration-resistant prostate cancer progression. Future Oncol 5(9):1403-1413.
13. Zuo M, Xu X, Li T, Ge R, & Li Z (2016) Progress in the mechanism and drug development of castration-resistant prostate cancer. Future Med Chem 8(7):765-788.
14. Armstrong CM & Gao AC (2015) Drug resistance in castration resistant prostate cancer: resistance mechanisms and emerging treatment strategies. Am J Clin Exp Urol 3(2):64-76.
15. Chen QW, Zhu XY, Li YY, & Meng ZQ (2014) Epigenetic regulation and cancer (review). Oncol Rep 31(2):523-532.
16. Kgatle MM, Kalla AA, Islam MM, Sathekge M, & Moorad R (2016) Prostate Cancer: Epigenetic Alterations, Risk Factors, and Therapy. Prostate Cancer 2016:5653862.
17. Shih JW, Wang LY, Hung CL, Kung HJ, & Hsieh CL (2015) Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism. Int J Mol Sci 16(12):28943-28978.
18. Morozov VM, Li Y, Clowers MM, & Ishov AM (2017) Inhibitor of H3K27 demethylase JMJD3/UTX GSK-J4 is a potential therapeutic option for castration resistant prostate cancer. Oncotarget 8(37):62131-62142.
19. Regufe da Mota S, et al. (2018) LSD1 inhibition attenuates androgen receptor V7 splice variant activation in castration resistant prostate cancer models. Cancer Cell Int 18:71.
20. Young LC & Hendzel MJ (2013) The oncogenic potential of Jumonji D2 (JMJD2/KDM4) histone demethylase overexpression. Biochem Cell Biol 91(6):369-377.
21. Berry WL & Janknecht R (2013) KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res 73(10):2936-2942.
22. Coffey K, et al. (2013) The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Res 41(8):4433-4446.
23. DeBerardinis RJ & Cheng T (2010) Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29(3):313-324.
24. Meyer N & Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8(12):976-990.
25. Li B & Simon MC (2013) Molecular Pathways: Targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer. Clin Cancer Res 19(21):5835-5841.
26. Amente S, Lania L, & Majello B (2011) Epigenetic reprogramming of Myc target genes. Am J Cancer Res 1(3):413-418.
27. Dang CV, Le A, & Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15(21):6479-6483.
28. Fan Y, Dickman KG, & Zong WX (2010) Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem 285(10):7324-7333.
29. Vander Heiden MG, Cantley LC, & Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324(5930):1029-1033.
30. Lunt SY & Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441-464.
31. DeBerardinis RJ, et al. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U. S. A. 104(49):19345-19350.
32. Zhao L, et al. (2009) Identification of candidate biomarkers of therapeutic response to docetaxel by proteomic profiling. Cancer Res 69(19):7696-7703.
33. TeSlaa T & Teitell MA (2014) Techniques to monitor glycolysis. Methods Enzymol 542:91-114.
34. Qiu MT, et al. (2015) KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1. Oncotarget 6(31):31702-31720.
35. Schalken J & Fitzpatrick JM (2016) Enzalutamide: targeting the androgen signalling pathway in metastatic castration-resistant prostate cancer. BJU Int 117(2):215-225.
36. de Bono JS, et al. (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364(21):1995-2005.
37. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440-446.
38. Franco R, Schoneveld OJ, Pappa A, & Panayiotidis MI (2007) The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 113(4-5):234-258.
39. Hoffman A, Spetner LM, & Burke M (2008) Ramifications of a redox switch within a normal cell: its absence in a cancer cell. Free Radic Biol Med 45(3):265-268.
40. Gounder SS, et al. (2012) Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training. PLoS One 7(9):e45697.
41. Chen M, Liu B, Ma J, Ge J, & Wang K (2017) Protective effect of mitochondriatargeted peptide MTP131 against oxidative stressinduced apoptosis in RGC5 cells. Mol Med Rep 15(4):2179-2185.
42. Wojtala A, et al. (2014) Methods to monitor ROS production by fluorescence microscopy and fluorometry. Methods Enzymol 542:243-262.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *