|
1. Bandy, B., and Davison, A.J. (1990). Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med 8, 523-539. 2. Barker, M.G., and Walmsley, R.M. (1999). Replicative ageing in the fission yeast Schizosaccharomyces pombe. Yeast 15, 1511-1518. 3. Bockler, S., Chelius, X., Hock, N., Klecker, T., Wolter, M., Weiss, M., Braun, R.J., and Westermann, B. (2017). Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates. J Cell Biol 216, 2481-2498. 4. Bonawitz, N.D., Chatenay-Lapointe, M., Pan, Y., and Shadel, G.S. (2007). Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5, 265-277. 5. Bonawitz, N.D., Rodeheffer, M.S., and Shadel, G.S. (2006). Defective mitochondrial gene expression results in reactive oxygen species-mediated inhibition of respiration and reduction of yeast life span. Mol Cell Biol 26, 4818-4829. 6. Bordt, E.A., Clerc, P., Roelofs, B.A., Saladino, A.J., Tretter, L., Adam-Vizi, V., Cherok, E., Khalil, A., Yadava, N., Ge, S.X., et al. (2017). The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species. Dev Cell 40, 583-594 e586. 7. Burte, F., Carelli, V., Chinnery, P.F., and Yu-Wai-Man, P. (2015). Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11, 11-24. 8. Chance, B., and Williams, G.R. (1956). The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Subj Biochem 17, 65-134. 9. Comfort, A. (1956). The biology of ageing. Lancet 271, 772-778. 10. De Vecchis, D., Cavellini, L., Baaden, M., Henin, J., Cohen, M.M., and Taly, A. (2017). A membrane-inserted structural model of the yeast mitofusin Fzo1. Sci Rep 7, 10217. 11. Desler, C., Hansen, T.L., Frederiksen, J.B., Marcker, M.L., Singh, K.K., and Juel Rasmussen, L. (2012). Is There a Link between Mitochondrial Reserve Respiratory Capacity and Aging? J Aging Res 2012, 192503. 12. Dhawan, J., and Laxman, S. (2015). Decoding the stem cell quiescence cycle--lessons from yeast for regenerative biology. J Cell Sci 128, 4467-4474. 13. Endo, T., Yamamoto, H., and Esaki, M. (2003). Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles. J Cell Sci 116, 3259-3267. 14. Frank, S., Gaume, B., Bergmann-Leitner, E.S., Leitner, W.W., Robert, E.G., Catez, F., Smith, C.L., and Youle, R.J. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1, 515-525. 15. Friedman, J.R., and Nunnari, J. (2014). Mitochondrial form and function. Nature 505, 335-343. 16. Fu, G., Wang, H., Cai, Y., Zhao, H., and Fu, W. (2018). Theaflavin alleviates inflammatory response and brain injury induced by cerebral hemorrhage via inhibiting the nuclear transcription factor kappa beta-related pathway in rats. Drug Des Devel Ther 12, 1609-1619. 17. Gems, D. (2015). The aging-disease false dichotomy: understanding senescence as pathology. Front Genet 6, 212. 18. Halder, J., and Bhaduri, A.N. (1998). Protective role of black tea against oxidative damage of human red blood cells. Biochem Biophys Res Commun 244, 903-907. 19. Handee, W., Li, X., Hall, K.W., Deng, X., Li, P., Benning, C., Williams, B.L., and Kuo, M.H. (2016). An Energy-Independent Pro-longevity Function of Triacylglycerol in Yeast. PLoS Genet 12, e1005878. 20. Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol 11, 298-300. 21. Harman, D. (1981). The aging process. Proc Natl Acad Sci U S A 78, 7124-7128. 22. Hatch, A.L., Gurel, P.S., and Higgs, H.N. (2014). Novel roles for actin in mitochondrial fission. J Cell Sci 127, 4549-4560. 23. Heden, T.D., Neufer, P.D., and Funai, K. (2016). Looking Beyond Structure: Membrane Phospholipids of Skeletal Muscle Mitochondria. Trends Endocrinol Metab 27, 553-562. 24. Hermann, G.J., Thatcher, J.W., Mills, J.P., Hales, K.G., Fuller, M.T., Nunnari, J., and Shaw, J.M. (1998). Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J Cell Biol 143, 359-373. 25. Hoppins, S., Lackner, L., and Nunnari, J. (2007). The machines that divide and fuse mitochondria. Annu Rev Biochem 76, 751-780. 26. Imran, A., Arshad, M.U., Arshad, M.S., Imran, M., Saeed, F., and Sohaib, M. (2018). Lipid peroxidation diminishing perspective of isolated theaflavins and thearubigins from black tea in arginine induced renal malfunctional rats. Lipids Health Dis 17, 157. 27. Jensen, R.E., Hobbs, A.E., Cerveny, K.L., and Sesaki, H. (2000). Yeast mitochondrial dynamics: fusion, division, segregation, and shape. Microsc Res Tech 51, 573-583. 28. Jiang, J.C., Stumpferl, S.W., Tiwari, A., Qin, Q., Rodriguez-Quinones, J.F., and Jazwinski, S.M. (2016). Identification of the Target of the Retrograde Response that Mediates Replicative Lifespan Extension in Saccharomyces cerevisiae. Genetics 204, 659-673. 29. Kaeberlein, M., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2004). Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2, E296. 30. Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13, 2570-2580. 31. Khan, S.M., Sobti, R.C., and Kataria, L. (2005). Pesticide-induced alteration in mice hepato-oxidative status and protective effects of black tea extract. Clin Chim Acta 358, 131-138. 32. Kraujalyte, V., Pelvan, E., and Alasalvar, C. (2016). Volatile compounds and sensory characteristics of various instant teas produced from black tea. Food Chem 194, 864-872. 33. Kuilman, T., Michaloglou, C., Mooi, W.J., and Peeper, D.S. (2010). The essence of senescence. Genes Dev 24, 2463-2479. 34. Kuroda, Y., and Hara, Y. (1999). Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat Res 436, 69-97. 35. Lakowski, B., and Hekimi, S. (1996). Determination of life-span in Caenorhabditis elegans by four clock genes. Science 272, 1010-1013. 36. Lane, N., and Martin, W. (2010). The energetics of genome complexity. Nature 467, 929-934. 37. Li, S., Lo, C.Y., Pan, M.H., Lai, C.S., and Ho, C.T. (2013). Black tea: chemical analysis and stability. Food Funct 4, 10-18. 38. Lin, J.K., Chen, P.C., Ho, C.T., and Lin-Shiau, S.Y. (2000). Inhibition of xanthine oxidase and suppression of intracellular reactive oxygen species in HL-60 cells by theaflavin-3,3'-digallate, (-)-epigallocatechin-3-gallate, and propyl gallate. J Agric Food Chem 48, 2736-2743. 39. Liu, S., Lu, H., Zhao, Q., He, Y., Niu, J., Debnath, A.K., Wu, S., and Jiang, S. (2005). Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41. Biochim Biophys Acta 1723, 270-281. 40. Longo, V.D., Antebi, A., Bartke, A., Barzilai, N., Brown-Borg, H.M., Caruso, C., Curiel, T.J., de Cabo, R., Franceschi, C., Gems, D., et al. (2015). Interventions to Slow Aging in Humans: Are We Ready? Aging Cell 14, 497-510. 41. Longo, V.D., and Fabrizio, P. (2012). Chronological aging in Saccharomyces cerevisiae. Subcell Biochem 57, 101-121. 42. Longo, V.D., Shadel, G.S., Kaeberlein, M., and Kennedy, B. (2012). Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16, 18-31. 43. Lu, J., Ho, C.T., Ghai, G., and Chen, K.Y. (2000). Differential effects of theaflavin monogallates on cell growth, apoptosis, and Cox-2 gene expression in cancerous versus normal cells. Cancer Res 60, 6465-6471. 44. Ludovico, P., Sansonetty, F., and Côrte-Real, M. (2001). Assessment of mitochondrial membrane potential in yeast cell populations by flow cytometry. Microbiology 147, 3335-3343. 45. Nunnari, J., and Suomalainen, A. (2012). Mitochondria: in sickness and in health. Cell 148, 1145-1159. 46. Okunuki, K. (1965). [Structure and function of mitochondria. Introduction]. Tanpakushitsu Kakusan Koso 10, 1241-1242. 47. Oliveira, A.V., Vilaca, R., Santos, C.N., Costa, V., and Menezes, R. (2017). Exploring the power of yeast to model aging and age-related neurodegenerative disorders. Biogerontology 18, 3-34. 48. Osman, C., Noriega, T.R., Okreglak, V., Fung, J.C., and Walter, P. (2015). Integrity of the yeast mitochondrial genome, but not its distribution and inheritance, relies on mitochondrial fission and fusion. Proc Natl Acad Sci U S A 112, E947-956. 49. Otsuga, D., Keegan, B.R., Brisch, E., Thatcher, J.W., Hermann, G.J., Bleazard, W., and Shaw, J.M. (1998). The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol 143, 333-349. 50. Payne, B.A., and Chinnery, P.F. (2015). Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochim Biophys Acta 1847, 1347-1353. 51. Polymenis, M., and Kennedy, B.K. (2012). Chronological and replicative lifespan in yeast: do they meet in the middle? Cell Cycle 11, 3531-3532. 52. Powell, C.D., Quain, D.E., and Smart, K.A. (2003). The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Res 3, 149-157. 53. Rockstein, M., and Brandt, K.F. (1963). Enzyme changes in flight muscle correlated with aging and flight ability in the male housefly. Science 139, 1049-1051. 54. Rolland, F., Winderickx, J., and Thevelein, J.M. (2002). Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2, 183-201. 55. Roy, M., Reddy, P.H., Iijima, M., and Sesaki, H. (2015). Mitochondrial division and fusion in metabolism. Curr Opin Cell Biol 33, 111-118. 56. Sauerwald, J., Jores, T., Eisenberg-Bord, M., Chuartzman, S.G., Schuldiner, M., and Rapaport, D. (2015). Genome-Wide Screens in Saccharomyces cerevisiae Highlight a Role for Cardiolipin in Biogenesis of Mitochondrial Outer Membrane Multispan Proteins. Mol Cell Biol 35, 3200-3211. 57. Schrempp, S.G., and van der Laan, M. (2015). Get Ready for Fusion: Insights into Mgm1-Mediated Membrane Remodeling. J Mol Biol 427, 2595-2598. 58. Sharma, V., and Rao, L.J. (2009). A thought on the biological activities of black tea. Crit Rev Food Sci Nutr 49, 379-404. 59. Shiraki, M., Hara, Y., Osawa, T., Kumon, H., Nakayama, T., and Kawakishi, S. (1994). Antioxidative and antimutagenic effects of theaflavins from black tea. Mutat Res 323, 29-34. 60. Smeal, T., Claus, J., Kennedy, B., Cole, F., and Guarente, L. (1996). Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84, 633-642. 61. Stadtman, E.R., Van Remmen, H., Richardson, A., Wehr, N.B., and Levine, R.L. (2005). Methionine oxidation and aging. Biochim Biophys Acta 1703, 135-140. 62. Tan, Q., Peng, L., Huang, Y., Huang, W., Bai, W., Shi, L., Li, X., and Chen, T. (2018). Structure-activity Relationship Analysis on Antioxidant and Anticancer Actions of Theaflavins on Human Colon Cancer Cells. J Agric Food Chem. 63. Toussaint, M., Levasseur, G., Gervais-Bird, J., Wellinger, R.J., Elela, S.A., and Conconi, A. (2006). A high-throughput method to measure the sensitivity of yeast cells to genotoxic agents in liquid cultures. Mutat Res 606, 92-105. 64. Toyama, E.Q., Herzig, S., Courchet, J., Lewis, T.L., Jr., Loson, O.C., Hellberg, K., Young, N.P., Chen, H., Polleux, F., Chan, D.C., et al. (2016). Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275-281. 65. van Deursen, J.M. (2014). The role of senescent cells in ageing. Nature 509, 439-446. 66. Vinson, J.A., and Zhang, J. (2005). Black and green teas equally inhibit diabetic cataracts in a streptozotocin-induced rat model of diabetes. J Agric Food Chem 53, 3710-3713. 67. Wallace, D.C., and Fan, W. (2009). The pathophysiology of mitochondrial disease as modeled in the mouse. Genes Dev 23, 1714-1736. 68. Wang, I.H., Chen, H.Y., Wang, Y.H., Chang, K.W., Chen, Y.C., and Chang, C.R. (2014). Resveratrol modulates mitochondria dynamics in replicative senescent yeast cells. PLoS One 9, e104345. 69. Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11, 872-884. 70. Wong, E.D., Wagner, J.A., Gorsich, S.W., McCaffery, J.M., Shaw, J.M., and Nunnari, J. (2000). The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J Cell Biol 151, 341-352. 71. Wu, S., Zhou, F., Zhang, Z., and Xing, D. (2011). Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J 278, 941-954. 72. You, Y., Yuan, X., Lee, H.J., Huang, W., Jin, W., and Zhan, J. (2015). Mulberry and mulberry wine extract increase the number of mitochondria during brown adipogenesis. Food Funct 6, 401-408. Youle, R.J., and van der Bliek, A.M. (2012). Mitochondrial fission, fusion, and stress. Science 337, 1062-1065. 73. Zorova, L.D., Popkov, V.A., Plotnikov, E.Y., Silachev, D.N., Pevzner, I.B., Jankauskas, S.S., Babenko, V.A., Zorov, S.D., Balakireva, A.V., Juhaszova, M., et al. (2018). Mitochondrial membrane potential. Anal Biochem 552, 50-59. |