帳號:guest(3.149.28.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾子育
作者(外文):Tseng, Tzu-Yu
論文名稱(中文):利用果蠅生物探討帕金森氏症相關基因CHCHD2對於粒線體氧化壓力的影響
論文名稱(外文):Using Drosophila as a model to investigate the influence of Parkinson-associated gene CHCHD2 on mitochondria oxidative stress
指導教授(中文):張慧雲
指導教授(外文):Chang, Hui-Yun
口試委員(中文):張壯榮
林玉俊
口試委員(外文):Chang, Chuang-Rung
Lin, Yu-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:105080541
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:40
中文關鍵詞:帕金森氏症多巴胺神經元氧化壓力
外文關鍵詞:Parkinson's diseasedopaminergic neuronoxidative stressCHCHD2Tau
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
帕金森氏症是一種主要影響運動的發展性神經系統疾病,發病年齡通常在65歲以上,另外,也有部分患者的發病年齡在20到40歲,稱為青年型帕金森氏症,這些患者大多是因為先天性基因異常、遺傳基因異常造成較早發病。在遺傳的因素中,目前已有多個研究證實許多基因突變是導致帕金森氏症的原因之一。而其中CHCHD2為穩定粒線體代謝的重要蛋白質,對於調節粒線體的電子傳遞鏈和活性含氧物扮演重要的角色,CHCHD2的突變和缺失在許多患者中已被發現,除此之外,在許多神經退化性疾病中,Tau蛋白的不正常磷酸化會造成Tau蛋白堆積在細胞內,進而造成神經細胞凋亡。在此研究中,我們利用果蠅作為模式生物來探討CHCHD2和Tau表現在多巴胺神經元中會對粒線體的氧化壓力造成什麼影響。結果發現過量表現Tau不只會增加粒線體的氧化壓力,也會使得爬行能力下降,但同時表現CHCHD2時則可以有效的降低氧化壓力以及提升爬行能力,在果蠅的視覺系統中,表現CHHCD2也能回復Tau所造成的不規則排列的複眼細胞。因此,我們的研究證實了過量表現CHCHD2在許多病理機制裡扮演了保護的角色,對日後在生物中研究帕金森氏症的致病機轉可能有所貢獻。
Parkinson’s disease (PD) is a progressive disorder of the central nervous system that primary affects movements. The age of disease onset is usually 65 years or older. The age of young onset Parkinson’s disease (YOPD) is between 20 to 40 years old. These early onset patients are often due to congenital genetic abnormalities and hereditary genetic abnormalities. In genetic factors, many studies have confirmed that the genes mutation may lead to PD. One of the genes in human is CHCHD2 which plays an important role in the regulation of electron transport chain and the level of reactive oxygen species. Genetic mutation and deletion in CHCHD2 are found in some patients with PD. In addition, the abnormal phosphorylation of tau causes tau protein aggregate in the cytosol, and lead to neuron death in many neurodegenerative diseases. In this study, we use Drosophila as a model to investigate how CHCHD2 and Tau affect mitochondrial oxidative stress in the dopaminergic neurons. Our results showed that overexpression of tau increased the mitochondrial oxidative stress and decreased the motor ability. Co-expression of CHCHD2 can effectively rescue the defect. In the visual system, the disorganized eye arrangement also rescued by overexpression of CHCHD2. As such, our results provide evidences that overexpression of CHCHD2 have a protective function in many aspects.
摘要 Ⅰ
Abstract ⅠⅠ
Acknowledgement ⅠⅠⅠ
Contents V
Introduction 1
1.Parkinson's disease 1
2.Symptoms of Parkinson’s disease 2
3.Pathology of Parkinson’s disease 3
4.Coiled-coil-helix-coiled-coil-helix domain containing 2(CHCHD2) 4
5.CHCHD2 family and function 5
6.CHCHD2 mutations 6
7.Microtubule-associated protein Tau (MAPT) 7
8.Tau phosphorylation 8
9.The pathological effects of tau phosphorylation 8
Materials and Methods 11
1.Drosophila stocks and culture 11
2.Brain dissection and confocal images 11
3.Scanning electron microscope (SEM) 12
4.Locomotor assay 12
5.Statistical analysis 13
Results 14
The human CHCHD2 mainly localizes to the mitochondria in the Drosophila adult brain. 14
Overexpression of the CHCHD2 rescue the defective mitochondria caused by human wild type tau4 in dopaminergic neurons. 15
Overexpression of the CHCHD2 rescue the locomotor ability caused by human wild type tau4. 17
Overexpression of the CHCHD2 rescue the eyes phenotype caused by human wild type tau4. 18
Discussion 20
CHCHD2 shows a protective effect on mitochondria function. 20
The variation level of CHCHD2 in different stress. 21
CHCHD2 connects mitochondrial apoptosis to cancer. 22
Figures 23
Figure 1. The sequence alignment of human CHCHD2 was injected into the Drosophila eggs. 23
Figure 2. The human CHCHD2 overlaps the mitochondrial signal expressing in the dopaminergic neurons of male Drosophila adult brains. 24
Figure 3. The overlap signal of human CHCHD2 and the mitochondrial expressing in the dopaminergic neurons of female Drosophila adult brains. 26
Figure 4. Expression of human CHCHD2 in the dopaminergic neurons reduce mito-timer signal in week1 fly’s brain. 28
Figure 5. Expression of human CHCHD2 in the dopaminergic neurons reduce mito-timer signal in week5 fly’s brain. 30
Figure 6. The locomotor ability of flies expressing human CHCHD2 and human wild type tau4 in the dopaminergic neurons with different age. 32
Figure 7. The eyes morphology displayed in human CHCHD2 and gl-tau group and separated by sex. 33
References 34
An, J., Shi, J., He, Q., Lui, K., Liu, Y., Huang, Y., & Sheikh, M. S. (2012). CHCM1/CHCHD6, a novel mitochondrial protein linked to regulation of mitofilin and mitochondrial cristae morphology. doi:10.1074/jbc.M111.277103
Andersson, A., Ritz, C., Lindgren, D., Edén, P., Lassen, C., Heldrup, J., Fioretos, T. (2007). Microarray-based classification of a consecutive series of 121 childhood acute leukemias: prediction of leukemic and genetic subtype as well as of minimal residual disease status. Leukemia, 21, 1198. doi:10.1038/sj.leu.2404688
Andreadis, A., Broderick, J. A., & Kosik, K. S. (1995). Relative exon affinities and suboptimal splice site signals lead to non-equivalence of two cassette exons. Nucleic Acids Research, 23(17), 3585-3593. doi:10.1093/nar/23.17.3585
Aras, S., Bai, M., Lee, I., Springett, R., Hüttemann, M., & Grossman, L. I. (2015). MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism. Mitochondrion, 20, 43-51.
Aras, S., Pak, O., Sommer, N., Finley, J. R., Hüttemann, M., Weissmann, N., & Grossman, L. I. (2013). Oxygen-dependent expression of cytochrome c oxidase subunit 4-2 gene expression is mediated by transcription factors RBPJ, CXXC5 and CHCHD2. Nucleic Acids Research, 41(4), 2255-2266. doi:10.1093/nar/gks1454
Armstrong, R. A. (2011). Visual Symptoms in Parkinson's Disease. 2011. doi:10.4061/2011/908306
Arnesano, F., Balatri, E., Banci, L., Bertini, I., & Winge, D. R. (2005). Folding Studies of Cox17 Reveal an Important Interplay of Cysteine Oxidation and Copper Binding. Structure, 13(5), 713-722.
Bannwarth, S., Ait-El-Mkadem, S., Chaussenot, A., Genin, E. C., Lacas-Gervais, S., Fragaki, K., Paquis-Flucklinger, V. (2014). A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain, 137(8), 2329-2345. doi:10.1093/brain/awu138
Barzilai, A., & Melamed, E. (2003). Molecular mechanisms of selective dopaminergic neuronal death in Parkinson's disease. Trends in Molecular Medicine, 9(3), 126-132.
Baughman, J. M., Nilsson, R., Gohil, V. M., Arlow, D. H., Gauhar, Z., & Mootha, V. K. (2009). A Computational Screen for Regulators of Oxidative Phosphorylation Implicates SLIRP in Mitochondrial RNA Homeostasis. PLOS Genetics, 5(8), e1000590. doi:10.1371/journal.pgen.1000590
Chaudhary, A. R., Berger, F., Berger, C. L., & Hendricks, A. G. (2018). Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams. 19(2), 111-121. doi:doi:10.1111/tra.12537
Chaudhuri, K. R., Martinez-Martin, P., Brown, R. G., Sethi, K., Stocchi, F., Odin, P., Schapira, A. H. V. (2007). The metric properties of a novel non-motor symptoms scale for Parkinson's disease: Results from an international pilot study. 22(13), 1901-1911. doi:doi:10.1002/mds.21596
Chin, S. S. M., & Goldman, J. E. (1996). Glial Inclusions in CNS Degenerative Diseases. Journal of Neuropathology & Experimental Neurology, 55(5), 499-508. doi:10.1097/00005072-199605000-00001
de Lau, L. M. L., & Breteler, M. M. B. (2006). Epidemiology of Parkinson's disease. The Lancet Neurology, 5(6), 525-535.
FAHN, S. (2003). Description of Parkinson's Disease as a Clinical Syndrome. 991(1), 1-14. doi:doi:10.1111/j.1749-6632.2003.tb07458.x
Foo, J. N., Liu, J., & Tan, E.-K. (2015). CHCHD2 and Parkinson's disease. The Lancet Neurology, 14(7), 681-682. doi:10.1016/S1474-4422(15)00098-8
Funayama, M., Ohe, K., Amo, T., Furuya, N., Yamaguchi, J., Saiki, S., Hattori, N. (2015). CHCHD2 mutations in autosomal dominant late-onset Parkinson's disease: a genome-wide linkage and sequencing study. The Lancet Neurology, 14(3), 274-282.
Gibb, W. R., & Lees, A. J. (1991). Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. 54(5), 388-396. doi:10.1136/jnnp.54.5.388 Journal of Neurology, Neurosurgery & Psychiatry
Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D., & Crowther, R. A. (1989). Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron, 3(4), 519-526.
Hamdane, M., Sambo, A.-V., Delobel, P., Bégard, S., Violleau, A., Delacourte, A., Buée, L. (2003). Mitotic-like Tau Phosphorylation by p25-Cdk5 Kinase Complex. 278(36), 34026-34034. doi:10.1074/jbc.M302872200
Hanahan, D., & Weinberg, Robert. (2011). Hallmarks of Cancer: The Next Generation. Cell, 144(5), 646-674.
Hutton, M., Lendon, C. L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Heutink, P. (1998). Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 393, 702. doi:10.1038/31508
Imahori, K., & Uchida, T. (1997). Physiology and Pathology of Tau Protein Kinases in Relation to Alzheimer's Disease. The Journal of Biochemistry, 121(2), 179-188.
Jankovic, J., & Tolosa, E. (2007). Parkinson's disease and movement disorders: Lippincott Williams & Wilkins.
Laker, R. C., Xu, P., Ryall, K. A., Sujkowski, A., Kenwood, B. M., Chain, K. H., Yan, Z. (2014). A novel MitoTimer reporter gene for mitochondrial content, structure, stress and damage in vivo. doi:10.1074/jbc.M113.530527
Leroy, K., & Brion, J.-P. (1999). Developmental expression and localization of glycogen synthase kinase-3β in rat brain. Journal of Chemical Neuroanatomy, 16(4), 279-293.
Lesage, S., & Brice, A. (2009). Parkinson's disease: from monogenic forms to genetic susceptibility factors. Human Molecular Genetics, 18(R1), R48-R59. doi:10.1093/hmg/ddp012
Li, X.-J., Yang, D., & Zhang, S.-C. (2007). CHAPTER 15 - Motor Neuron and Dopamine Neuron Differentiation. In J. F. Loring, R. L. Wesselschmidt, & P. H. Schwartz (Eds.), Human Stem Cell Manual (pp. 199-209). Oxford: Academic Press.
Liu, Y., Clegg, H. V., Leslie, P. L., Di, J., Tollini, L. A., He, Y., Zhang, Y. (2014). CHCHD2 inhibits apoptosis by interacting with Bcl-x L to regulate Bax activation. Cell Death And Differentiation, 22, 1035. doi:10.1038/cdd.2014.194
Liu, Y., & Zhang, Y. (2015). CHCHD2 connects mitochondrial metabolism to apoptosis. Molecular & Cellular Oncology, 2(4), e1004964. doi:10.1080/23723556.2015.1004964
Longen, S., Bien, M., Bihlmaier, K., Kloeppel, C., Kauff, F., Hammermeister, M., Riemer, J. (2009). Systematic Analysis of the Twin Cx9C Protein Family. Journal of Molecular Biology, 393(2), 356-368.
Mazzoni, P., Shabbott, B., & Cortés, J. C. (2012). Motor Control Abnormalities in Parkinson's Disease. doi:10.1101/cshperspect.a009282
Meng, H., Yamashita, C., Shiba-Fukushima, K., Inoshita, T., Funayama, M., Sato, S., Hattori, N. (2017). Loss of Parkinson’s disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome c. Nature Communications, 8, 15500. doi:10.1038/ncomms15500
Qi, Z., Miller, G. W., & Voit, E. O. (2014). Rotenone and paraquat perturb dopamine metabolism: A computational analysis of pesticide toxicity. Toxicology, 315, 92-101.
Tio, M., Wen, R., Lim, Y. L., Zukifli, Z. H. B., Xie, S., Ho, P., Tan, E.-K. (2017). Varied pathological and therapeutic response effects associated with CHCHD2 mutant and risk variants. 38(8), 978-987. doi:doi:10.1002/humu.23234
Virginia M-Y Lee, Michel Goedert, & Trojanowski, J. Q. (2001). Neurodegenerative Tauopathies. 24(1), 1121-1159. doi:10.1146/annurev.neuro.24.1.1121
Wu, T.-H., Lu, Y.-N., Chuang, C.-L., Wu, C.-L., Chiang, A.-S., Krantz, D. E., & Chang, H.-Y. J. A. N. (2013). Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau. 125(5), 711-725.
Xiong, H., Wang, D., Chen, L., Choo, Y. S., Ma, H., Tang, C., Zhang, Z. (2009). Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. The Journal of Clinical Investigation, 119(3), 650-660. doi:10.1172/JCI37617
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *