帳號:guest(3.143.5.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡婷宇
作者(外文):Tsai, Ting-Yu.
論文名稱(中文):肺癌細胞中p53在砷誘發之細胞自噬與細胞凋亡作用的研究
論文名稱(外文):The role of p53 in the arsenic-induced autophagy and apoptosis of lung cancer cells
指導教授(中文):林立元
指導教授(外文):Lin, Lih-Yuan
口試委員(中文):楊嘉鈴
柯政昌
口試委員(外文):Yang, Jia-Ling
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:105080533
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:68
中文關鍵詞:細胞自噬細胞凋亡
外文關鍵詞:arsenicp53autophagyapoptosis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:390
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
砷是環境中常見的汙染物質,在許多研究報告中指出,砷造成的細胞毒性會產生氧化壓力進而造成細胞凋亡。然而,最近有研究顯示細胞自噬參與在砷誘導的細胞反應。本篇論文主要在探討當人肺腺癌細胞 (A549 cell) 受到砷刺激後,p53 蛋白在細胞自噬 (autophagy) 與細胞凋亡 (apoptosis) 作用上所扮演的角色,並以不含有 p53 基因的非小細胞肺癌細胞 (H1299 cell) 來比較 A549 細胞中砷誘導的反應。首先我們發現0到100 µM的砷處理,不會對 A549 細胞的存活率造成顯著影響,但 H1299 細胞存活率會隨著砷濃度增加而明顯下降。我們也發現隨著處理砷的濃度增加,會誘發 A549 細胞中腫瘤抑制基因 p53 蛋白隨之增加。進一步我們發現當 A549 細胞中p53 蛋白被砷激活,進而提高 PTEN 表現,以抑制 PI3K/Akt/ mTOR 訊號傳遞路徑,促進細胞自噬作用的產生。接著我們在 A549 細胞中處理 NH4Cl 抑制細胞自噬和降低細胞活性,與砷共處理可以阻斷細胞自噬並活化細胞凋亡;另外使用自噬活化劑 rapamycin,可以緩解H1299 細胞中由砷造成的細胞凋亡。這些結果表示,細胞自噬能夠在砷造成的細胞損傷中發揮保護的作用,並抑制細胞凋亡的發生。另一方面,我們使用 PFT-α 來降低 p53 蛋白活性或以 siRNA 抑制 p53 基因表現,在砷的處理下則會阻斷細胞自噬路徑的活化,導致細胞凋亡增加。相反的,在 H1299 細胞中表現 p53 基因則會在砷處理下增加細胞存活率。我們的研究結果證明,p53 蛋白是調節砷誘導的細胞自噬的關鍵調節因子。p53 的存在可以激活細胞自噬並減少由砷所造成的細胞傷害。
Arsenic is a common environmental contaminant. Previous studies indicated that arsenic exposure increases oxidative stress, and leads cell to apoptotic death. However, autophagy was recently indicated to participate in the arsenic-induced cell responses. We investigated in this study the role of p53 in autophagy and apoptosis of A549 cells with arsenic treatment. A p53-null H1299 cell line was used to compare the arsenic-induced responses with A549 cells. Treating cells with 0 to 100 μM sodium arsenite did not cause significant effect on the viability of A549 cells. However, survival rate of H1299 cells decreased significantly with the increment of arsenite concentrations. Analysis of p53 revealed that the protein increased with the arsenite treatment in A549 cells. Activation of p53 increases PTEN expression which causes the inhibition of PI3K/Akt/mTOR signal transduction pathway to activate autophagy in A549 cells. Administration of NH4Cl in A549 cells inhibited autophagy and reduced cell viability. On the contrary, arsenic treatment blocked autophagy and led cell to apoptotic death in H1299 cells. Rapamycin, an autophagy activator, rescued H1299 cells from arsenite-induced apoptosis. These results indicate that autophagy protects cells form arsenic-induced cell damage and reduces the occurrence of apoptosis. We further used PFT-α to reduce p53 activity or siRNA to knockdown p53 gene expression with arsenite treatment. The fraction of apoptotic cell increased with the blockade of autophagy. Expression of p53 in H1299 cells otherwise increased the cell viability with arsenic treatment. Results from our study demonstrate that p53 is a key regulator to modulate the progression of arsenite-induced autophagy. Presence of p53 activates autophagy and reduces cell damages upon arsenite exposures.
中文摘要…………………………………………………………………2
英文摘要…………………………………………………………………4
緒論………………………………………………………………………6
材料與方法……………………………………………………………..17
結果……………………………………………………………………..26
討論……………………………………………………………………..36
參考文獻………………………………………………………………..42
附圖……………………………………………………………………..49
Adams, J.M., Cory, S., 1998. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326.

Albert, M.L., Sauter, B., Bhardwaj, N., 1998. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86-89.

Arita, A., Costa, M., 2009. Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics 1, 222-228.

Barry, M., Bleackley, R.C., 2002. Cytotoxic T lymphocytes: All roads lead to death. Nat Rev Immunol 2, 401-409.

Benedetti, A., Marucci, L., 1999. The significance of apoptosis in the liver. Liver 19, 453-463.

Berkers, C.R., Maddocks, O.D., Cheung, E.C., Mor, I., Vousden, K.H., 2013. Metabolic regulation by p53 family members. Cell Metab 18, 617-633.

Boya, P., Gonzalez-Polo, R.A., Casares, N., Perfettini, J.L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P., Kroemer, G., 2005. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25, 1025-1040.

Bykov, V.J., Wiman, K.G., 2003. Novel cancer therapy by reactivation of the p53 apoptosis pathway. Ann Med 35, 458-465.

Carney, D.A., 2008. Arsenic trioxide mechanisms of action--looking beyond acute promyelocytic leukemia. Leuk Lymphoma 49, 1846-1851.

Chang, Y.Y., Kuo, T.C., Hsu, C.H., Hou, D.R., Kao, Y.H., Huang, R.N., 2012. Characterization of the role of protein-cysteine residues in the binding with sodium arsenite. Arch Toxicol 86, 911-922.

Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., Mukherjee, C., Shi, Y., Gelinas, C., Fan, Y., Nelson, D.A., Jin, S., White, E., 2006. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51-64.

Dice, J.F., 2007. Chaperone-mediated autophagy. Autophagy 3, 295-299.
Elmore, S., 2007. Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495-516.

Erraguntla, N.K., Sielken, R.L., Jr., Valdez-Flores, C., Grant, R.L., 2012. An updated inhalation unit risk factor for arsenic and inorganic arsenic compounds based on a combined analysis of epidemiology studies. Regul Toxicol Pharmacol 64, 329-341.

Fan, T.J., Han, L.H., Cong, R.S., Liang, J., 2005. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 37, 719-727.

Firestein, G.S., Yeo, M., Zvaifler, N.J., 1995. Apoptosis in rheumatoid arthritis synovium. J Clin Invest 96, 1631-1638.

Floter, J., Kaymak, I., Schulze, A., 2017. Regulation of Metabolic Activity by p53. Metabolites 7.

Garelick, H., Jones, H., Dybowska, A., Valsami-Jones, E., 2008. Arsenic Pollution Sources. Rev Environ Contam T 197, 17-60.

Gerschenson, L.E., Rotello, R.J., 1992. Apoptosis: a different type of cell death. FASEB J 6, 2450-2455.

Giaccia, A.J., Kastan, M.B., 1998. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12, 2973-2983.

Harper, J.W., Adami, G.R., Wei, N., Keyomarsi, K., Elledge, S.J., 1993. The P21 Cdk-Interacting Protein Cip1 Is a Potent Inhibitor of G1 Cyclin-Dependent Kinases. Cell 75, 805-816.

Herrmann, M., Voll, R.E., Zoller, O.M., Hagenhofer, M., Ponner, B.B., Kalden, J.R., 1998. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41, 1241-1250.

Hotchkiss, R.S., Swanson, P.E., Freeman, B.D., Tinsley, K.W., Cobb, J.P., Matuschak, G.M., Buchman, T.G., Karl, I.E., 1999. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27, 1230-1251.

Hughes, M.F., 2002. Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133, 1-16.

Janicke, R.U., Sohn, D., Schulze-Osthoff, K., 2008. The dark side of a tumor suppressor: anti-apoptotic p53. Cell Death Differ 15, 959-976.

Jomova, K., Jenisova, Z., Feszterova, M., Baros, S., Liska, J., Hudecova, D., Rhodes, C.J., Valko, M., 2011. Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31, 95-107.

Kanzawa, T., Kondo, Y., Ito, H., Kondo, S., Germano, I., 2003. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide. Cancer Res 63, 2103-2108.

Kliosnky, D., 2016. Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy (3rd edition) (vol 12, pg 1, 2015). Autophagy 12, 443-443.

Kung, C.P., Budina, A., Balaburski, G., Bergenstock, M.K., Murphy, M.E., 2011. Autophagy in Tumor Suppression and Cancer Therapy. Crit Rev Eukar Gene 21, 71-100.

Levine, A.J., Momand, J., Finlay, C.A., 1991. The p53 tumour suppressor gene. Nature 351, 453-456.

Levine, B., Abrams, J., 2008. p53: The Janus of autophagy? Nat Cell Biol 10, 637-639.
Li, W.W., Li, J., Bao, J.K., 2012. Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69, 1125-1136.

Liu, C.W., Lin, K.H., Kuo, Y.M., 2003. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Sci Total Environ 313, 77-89.

Liu, J.X., Zhou, G.B., Chen, S.J., Chen, Z., 2012. Arsenic compounds: revived ancient remedies in the fight against human malignancies. Curr Opin Chem Biol 16, 92-98.

Maiuri, M.C., Galluzzi, L., Morselli, E., Kepp, O., Malik, S.A., Kroemer, G., 2010. Autophagy regulation by p53. Curr Opin Cell Biol 22, 181-185.

Miyashita, T., Krajewski, S., Krajewska, M., Wang, H.G., Lin, H.K., Liebermann, D.A., Hoffman, B., Reed, J.C., 1994. Tumor-Suppressor P53 Is a Regulator of Bcl-2 and Bax Gene-Expression in-Vitro and in-Vivo. Oncogene 9, 1799-1805.

Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y., Taya, Y., 2000. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849-862.

Oren, M., 1999. Regulation of the p53 tumor suppressor protein. J Biol Chem 274, 36031-36034.

Pitzer, F., Dantes, A., Fuchs, T., Baumeister, W., Amsterdam, A., 1996. Removal of proteasomes from the nucleus and their accumulation in apoptotic blebs during programmed cell death. FEBS Lett 394, 47-50.

Porter, A.G., Janicke, R.U., 1999. Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6, 99-104.

Ravi, R., Mookerjee, B., Bhujwalla, Z.M., Sutter, C.H., Artemov, D., Zeng, Q., Dillehay, L.E., Madan, A., Semenza, G.L., Bedi, A., 2000. Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14, 34-44.

Shintani, T., Klionsky, D.J., 2004. Autophagy in health and disease: a double-edged sword. Science 306, 990-995.

Speidel, D., 2010. Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol 20, 14-24.

Vincenz, C., 2001. Death receptors and apoptosis. Deadly signaling and evasive tactics. Cardiol Clin 19, 31-43.

Waga, S., Hannon, G.J., Beach, D., Stillman, B., 1994. The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574-578.

Yan, W.S., Zhang, Y.H., Zhang, J., Liu, S., Cho, S.J., Chen, X.B., 2011. Mutant p53 Protein Is Targeted by Arsenic for Degradation and Plays a Role in Arsenic-mediated Growth Suppression. Journal of Biological Chemistry 286, 17478-17486.

Yorimitsu, T., Klionsky, D.J., 2005. Autophagy: molecular machinery for self-eating. Cell Death Differ 12 Suppl 2, 1542-1552.

Yu, Q., 2006. Restoring p53-mediated apoptosis in cancer cells: new opportunities for cancer therapy. Drug Resist Updat 9, 19-25.

Bove, J., Martinez-Vicente, M., Vila, M., 2011. Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12, 437-452.

Chen, Z., Trotman, L.C., Shaffer, D., Lin, H.K., Dotan, Z.A., Niki, M., Koutcher, J.A., Scher, H.I., Ludwig, T., Gerald, W., Cordon-Cardo, C., Pandolfi, P.P., 2005. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725-730.

Freeman, D.J., Li, A.G., Wei, G., Li, H.H., Kertesz, N., Lesche, R., Whale, A.D., Martinez-Diaz, H., Rozengurt, N., Cardiff, R.D., Liu, X., Wu, H., 2003. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 3, 117-130.

Levine, B., Yuan, J., 2005. Autophagy in cell death: an innocent convict? J Clin Invest 115, 2679-2688.

Maiuri, M.C., Zalckvar, E., Kimchi, A., Kroemer, G., 2007. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Bio 8, 741-752.

Portt, L., Norman, G., Clapp, C., Greenwood, M., Greenwood, M.T., 2011. Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813, 238-259.

Raff, M.C., 1992. Social controls on cell survival and cell death. Nature 356, 397-400.
Stewart, Z.A., Pietenpol, J.A., 2001. p53 Signaling and cell cycle checkpoints. Chem Res Toxicol 14, 243-263.

Vousden, K.H., 2000. p53: death star. Cell 103, 691-694.

Wu, Y.T., Tan, H.L., Huang, Q., Ong, C.N., Shen, H.M., 2009. Activation of the PI3K-Akt-mTOR signaling pathway promotes necrotic cell death via suppression of autophagy. Autophagy 5, 824-834.

Yan, W.S., Zhang, Y.H., Zhang, J., Liu, S., Cho, S.J., Chen, X.B., 2011. Mutant p53 Protein Is Targeted by Arsenic for Degradation and Plays a Role in Arsenic-mediated Growth Suppression. Journal of Biological Chemistry 286, 17478-17486.

Dai, J., Peng, L., Fan, K., Wang, H., Wei, R., Ji, G., Cai, J., Lu, B., Li, B., Zhang, D., Kang, Y., Tan, M., Qian, W., Guo, Y., 2009. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 28, 3412-3422.
Han, Y.H., Kim, S.Z., Kim, S.H., Park, W.H., 2008. Induction of apoptosis in arsenic trioxide-treated lung cancer A549 cells by buthionine sulfoximine. Mol Cells 26, 158-164.

Ichimura, Y., Kumanomidou, T., Sou, Y.S., Mizushima, T., Ezaki, J., Ueno, T., Kominami, E., Yamane, T., Tanaka, K., Komatsu, M., 2008. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283, 22847-22857.

Lau, A., Zheng, Y., Tao, S.S., Wang, H.H., Whitman, S.A., White, E., Zhang, D.D., 2013. Arsenic Inhibits Autophagic Flux, Activating the Nrf2-Keap1 Pathway in a p62-Dependent Manner. Molecular and Cellular Biology 33, 2436-2446.

Li, Z.Y., Yang, Y., Ming, M., Liu, B., 2011. Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun 414, 5-8.

Yan, W.S., Zhang, Y.H., Zhang, J., Liu, S., Cho, S.J., Chen, X.B., 2011. Mutant p53 Protein Is Targeted by Arsenic for Degradation and Plays a Role in Arsenic-mediated Growth Suppression. Journal of Biological Chemistry 286, 17478-17486.

Zhang, T., Qi, Y.L., Liao, M.J., Xu, M., Bower, K.A., Frank, J.A., Shen, H.M., Luo, J., Shi, X.L., Chen, G., 2012. Autophagy Is a Cell Self-Protective Mechanism Against Arsenic-Induced Cell Transformation. Toxicol Sci 130, 298-308.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *