帳號:guest(3.17.186.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭怡鍇
作者(外文):Cheng, Yi-Kai
論文名稱(中文):探討Tau protein和Parkin 以及 ParkinT240R mutant 在果蠅多巴胺神經元的相互作用
論文名稱(外文):The genetic interaction between human wild type Tau and Parkin and ParkinT240R mutant in Drosophila dopaminergic neuron
指導教授(中文):張慧雲
指導教授(外文):Chang, Hui-Yun
口試委員(中文):張壯榮
林玉俊
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:105080531
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:43
中文關鍵詞:帕金森氏症多巴胺神經元
外文關鍵詞:parkinson's diseaseTauParkinParkinT240Rmitochondrial
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近期研究表示磷酸化的Tau蛋白會堆積在細胞質當中並且以插入的方式崁入粒線體的外膜,因而導致粒線體膜電位增加而受損(Hu et al., 2016)。
PINK1/Parkin為主要調節粒線體自噬作用,將受損的粒線體標記並且清除,在此機制當中Parkin為PINK1下游也可經由over-express Parkin來拯救PINK1的缺失(Costa, Loh, & Martins, 2013)。Tau蛋白不正常的堆積以及ParkinT240R mutant皆與帕金森氏症有關。在這裡我們用UAS/GAL4 系統,表現Tau對於Parkin以及ParkinT240R之間在果蠅多巴胺神經元內的相互作用。在我們實驗中,發現同時表現Tau和Parkin以及Tau和ParkinT240R mutant能使單獨表現Tau的果蠅壽命延長,爬行能力也有所改善。不僅如此,磷酸化的Tau也因此減少。另外我們利用UAS-MitoTimer來標記受損粒線體,用於研究受損粒線體在多巴胺神經元內堆積的情形,我們發現Tau和Parkin以及Tau和ParkinT240R mutant 能夠減少受損粒線體堆積在軸突當中,並且我們發現表現Tau在第一周時受損粒線體堆積情形相似於control 組第四周時受損堆積情形。總而言之,我們的研究了解Tau蛋白對於Parkin以及ParkinT240R mutant之間在tyrosine hydroxylase neurons、壽命測試、行為實驗以及粒線體中有許多相互影響的可能性。
Recent studies have shown that phosphorylated tau protein accumulates in the cytoplasm and inserts into the outer membrane of the mitochondria. As a result, the mitochondrial membrane potential increases and is impairs. PINK1/Parkin- mediated mitophagy selectively eliminates damaged mitochondria(Hu et al., 2016). Parkin is the downstream of PINK1 and overexpression of Parkin can rescue PINK1 dysfunction(Costa et al., 2013). Abnormal accumulation of Tau protein and ParkinT240R mutant are associated with Parkinson's disease. In this study, we used UAS/GAL4 system to study the interaction between human wild-type Tau and Parkin in Drosophila dopaminergic neurons. In our study, we found that co-expressing human wild- type Tau and Parkin could prolong the lifespan, improved the locomotion ability and reduced the phosphorylated tau. In addition, we used UAS-MitoTimer to label damaged mitochondria to study the accumulation of damaged mitochondria in dopaminergic neurons. We found that co-expression of human wild-type Tau with Parkin or ParkinT240 mutant could reduce the damaged mitochondrial accumulation in axons. Moreover, we found that the phenotypes of over-expressing human wild-type Tau accumulated damaged mitochondria in axons during aging at 1 week(arrow area) were similar to the control group aging at 4 weeks. In summary, our study shows that wild-type or mutant Parkin and human wild-type Tau have functional interaction in tyrosine hydroxylase neurons, climbing assay, life span and mitochondria.
Content
中文摘要 I
Abstract II
致謝 IV
Introduction 1
Parkinson’s disease (PD) 1
Tau protein 2
PINK1 / Parkin 3
Mitochondria 4
Materials and methods 7
Drosophila culture and strains 7
Lifespan assay 7
Behavioral analysis 7
Immunohistochemistry and confocal images 8
Result 10
Overexpression of Parkin or ParkinT240R would increase the life span under the background of wild-type tau 10
Overexpression of Parkin or ParkinT240R mutant decreased the level of phosphorylated wild-type Tau at 1_week and 4_week. 12
Overexpression of Parkin, ParkinT240R mutant rescued the locomotion defect caused by human wild-type tau at 1_week to 4_week. 13
Overexpression of human wild-type Tau caused damaged mitochondria accumulation in axon. 15
Overexpression of Parkin or ParkinT240R mutant rescued the damaged mitochondrial accumulation phenotype caused by wild-type Tau 16
Discussion 18
Figure 21
Reference 41



Barone, P. (2010). Neurotransmission in Parkinson’s disease: beyond dopamine. European Journal of Neurology.
Bender, A., Krishnan, K. J., Morris, C. M., Taylor, G. A., Reeve, A. K., Perry, R. Klopstock, T. (2006). High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nature genetics, 38(5), 515.
Costa, A., Loh, S., & Martins, L. M. (2013). Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson’s disease. Cell death & disease
Costa, A., Loh, S., & Martins, L. M. (2014). Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson’s disease. Cell death & disease.
Cummins, N., & Götz, J. (2017). Shedding light on mitophagy in neurons: what is the evidence for PINK1/Parkin mitophagy in vivo? Cellular and Molecular Life Sciences.
Dagda, R. K., Cherra, S. J., Kulich, S. M., Tandon, A., Park, D., & Chu, C. T. (2009). Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. Journal of Biological Chemistry.
De Lau, L. M., & Breteler, M. M. (2006). Epidemiology of Parkinson's disease. The Lancet Neurology
Ding, W.-X., & Yin, X.-M. (2012). Mitophagy: mechanisms, pathophysiological roles, and analysis.
Fahn, S. (2003). Description of Parkinson's disease as a clinical syndrome. Annals of the New York Academy of Sciences
Feany, M. B., & Dickson, D. W. (1996). Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society,.
Hertz, N. T., Berthet, A., Sos, M. L., Thorn, K. S., Burlingame, A. L., Nakamura, K., & Shokat, K. M. (2013). A neo-substrate that amplifies catalytic activity of Parkinson’s-disease-related kinase PINK1. Cell
Hu, Y., Li, X.-C., Wang, Z.-h., Luo, Y., Zhang, X., Liu, X.-P., Chen, Z. (2016). Tau accumulation impairs mitophagy via increasing mitochondrial membrane potential and reducing mitochondrial Parkin. Oncotarget.
Klein, C., & Westenberger, A. (2012). Genetics of Parkinson’s disease. Cold Spring Harbor perspectives in medicine.
Ko, J. H., & Strafella, A. P. (2012). Dopaminergic neurotransmission in the human brain: new lessons from perturbation and imaging. The Neuroscientist.
Kolodziejczyk, A., Sun, X., Meinertzhagen, I. A., & Nässel, D. R. (2008). Glutamate, GABA and Acetylcholine Signaling Components in the Lamina of the Drosophila Visual System. PLoS One
Kong, E. C., Woo, K., Li, H., Lebestky, T., Mayer, N., Sniffen, M. R., . Wolf, F. W. (2010). A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila. PLoS One.
Laker, R. C., Xu, P., Ryall, K. A., Sujkowski, A., Kenwood, B. M., Chain, K. H., Dirscoll, M. (2014). A novel MitoTimer reporter gene for mitochondrial content, structure, stress and damage in vivo. Journal of Biological Chemistry, jbc.
Lei, P., Ayton, S., Finkelstein, D. I., Adlard, P. A., Masters, C. L., & Bush, A. I. (2010). Tau protein: relevance to Parkinson's disease. The international journal of biochemistry & cell biology.
Liu, Q., Liu, S., Kodama, L., Driscoll, M. R., & Wu, M. N. (2012). Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Current Biology.
Lu, B., & Vogel, H. (2009). Drosophila models of neurodegenerative diseases. Annual Review of Pathological Mechanical Disease.
Mattson, M. P., Gleichmann, M., & Cheng, A. (2008). Mitochondria in neuroplasticity and neurological disorders. Neuron
Melov, S., Adlard, P. A., Morten, K., Johnson, F., Golden, T. R., Hinerfeld, D.. Volitakis, I. (2007). Mitochondrial oxidative stress causes hyperphosphorylation of tau. PLoS One.
Mudher, A., Shepherd, D., Newman, T., Mildren, P., Jukes, J., Squire, A., . . . Asuni, A. (2004). GSK-3β inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Molecular psychiatry.
Neve, R. L., Harris, P., Kosik, K. S., Kurnit, D. M., & Donlon, T. A. (1986). Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Molecular Brain Research.
Pandey, U. B., & Nichols, C. D. (2011). Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery. Pharmacological Reviews
Pascucci, B., D’Errico, M., Romagnoli, A., De Nuccio, C., Savino, M., Pietraforte, D., . . . Baccarini, S. (2017). Overexpression of parkin rescues the defective mitochondrial phenotype and the increased apoptosis of Cockayne Syndrome A cells. Oncotarget
Quintanilla, R. A., Matthews-Roberson, T. A., Dolan, P. J., & Johnson, G. V. (2009). Caspase-cleaved tau expression results in mitochondrial dysfunction in cortical neurons. Implications for the pathogenesis of Alzheimer disease. Journal of Biological Chemistry.
Reddy, P. H. (2011). Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer's disease. Brain researc.
Rompuy, A.-S. V., Lobbestael, E., Perren, A. V. d., Haute, C. V. d., & Baekelandt, V. (2014). Long-Term Overexpression of Human Wild-Type and T240R Mutant Parkin in Rat Substantia Nigra Induces Progressive Dopaminergic Neurodegeneration. Journal of Neuropathology & Experimental Neurology
Sheng, Z.-H., & Cai, Q. (2012). Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nature Reviews Neuroscience
Truban, D., Hou, X., Caulfield, T. R., Fiesel, F. C., & Springer, W. (2017). PINK1, parkin, and mitochondrial quality control: what can we learn about Parkinson’s disease pathobiology? Journal of Parkinson's disease.
VanItallie, T. B. (2008). Parkinson disease: primacy of age as a risk factor for mitochondrial dysfunction. Metabolism.
Wei, H., Liu, L., & Chen, Q. (2015). Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research.
Zhang, C., Yu, X., Gao, J., Zhang, Q., Sun, S., Zhu, H.,Yan, H. (2018). PINK1/Parkin-mediated mitophagy was activated against 1, 4-Benzoquinone-induced apoptosis in HL-60 cells. Toxicology in Vitro.
Zhu, X., Perry, G., Moreira, P. I., Aliev, G., Cash, A. D., Hirai, K., & Smith, M. A. (2006). Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. Journal of Alzheimer's Disease.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *