|
1. Serrano, A., et al., H+-PPases: yesterday, today and tomorrow. IUBMB Life, 2007. 59(2): p. 76-83. 2. Kajander, T., J. Kellosalo, and A. Goldman, Inorganic pyrophosphatases: one substrate, three mechanisms. FEBS Lett, 2013. 587(13): p. 1863-9. 3. Pedersen, B.P., et al., Crystal structure of the plasma membrane proton pump. Nature, 2007. 450(7172): p. 1111-4. 4. Segami, S., et al., Biochemical, structural, and physiological characteristics of vacuolar H+-pyrophosphatase. Plant Cell Physiol, 2018. 5. Maeshima, M., Vacuolar H-pyrophosphatase. Biochim Biophys Acta., 2000. 1465 (1-2): p. 37-51. 6. Seufferheld, M.J., et al., Evolution of vacuolar proton pyrophosphatase domains and volutin granules: clues into the early evolutionary origin of the acidocalcisome. Biol Direct, 2011. 6: p. 50. 7. King, N. and S.B. Carroll, A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci U S A, 2001. 98(26): p. 15032-7. 8. Kellosalo, J., et al., The structure and catalytic cycle of a sodium-pumping pyrophosphatase. Science, 2012. 337(6093): p. 473-6. 9. Luoto, H.H., et al., Membrane-integral pyrophosphatase subfamily capable of translocating both Na+ and H+. Proc Natl Acad Sci U S A, 2013. 110(4): p. 1255-60. 10. Nakanishi Y and M. M., Molecular Cloning of Vacuolar H1-Pyrophosphatase and Its Developmental Expression in Growing Hypocotyl of Mung Bean. Plant Physiol. , 1998. 116(2): p. 589-597. 11. Ferjani, A., et al., Regulation of pyrophosphate levels by H+-PPase is central for proper resumption of early plant development. Plant Signal Behav, 2012. 7(1): p. 38-42. 12. Catherine P. Darley, J.M. Davies, and D.S. , Chill-lnduced Changes in the Activity and Abundance of the VacuoIar Proton - Pumping Pyrophos phatase from Mung Bean Hypocotyls. Plant Physiol., 1995. 109(2): p. 659-665. 13. Gaxiola, R.A., et al., Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc Natl Acad Sci U S A, 2001. 98(20): p. 11444-9. 14. Maeshima, M., et al., Proton Pumps of the Vacuolar Membrane in Growing Plant Cells. Journal of Plant Research, 1996. 109(1): p. 119-125. 15. Keiichi Torimitsu, et al., Effect of External pH on the Cytoplasmic and Vacuolar pHs in Mung Bean Root-Tip Cells: A 31P Nuclear Magnetic Resonance Study. Plant & Cell Physiol, 1984. 25(8): p. 1403-1409. 16. Gaxiola, R.A., et al., Plant H(+)-PPases: Reversible Enzymes with Contrasting Functions Dependent on Membrane Environment. Mol Plant, 2016. 9(3): p. 317-319. 17. Schilling, R.K., et al., AVP1: One Protein, Many Roles. Trends Plant Sci, 2017. 22(2): p. 154-162. 18. Muto Y, et al., Vacuolar proton pumps and aquaporins involved in rapid internode elongation of deepwater rice. Biosci Biotechnol Biochem, 2011. 75(1): p. 114-122. 19. Gaxiola, R.A., M.G. Palmgren, and K. Schumacher, Plant proton pumps. FEBS Lett, 2007. 581(12): p. 2204-14. 20. Segami, S., et al., Dynamics of vacuoles and H+-pyrophosphatase visualized by monomeric green fluorescent protein in Arabidopsis: artifactual bulbs and native intravacuolar spherical structures. Plant Cell, 2014. 26(8): p. 3416-34. 21. Lin, S.M., et al., Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature, 2012. 484(7394): p. 399-403. 22. Tsai, J.Y., et al., Proton/sodium pumping pyrophosphatases: the last of the primary ion pumps. Curr Opin Struct Biol, 2014. 27: p. 38-47. 23. Li, K.M., et al., Membrane pyrophosphatases from Thermotoga maritima and Vigna radiata suggest a conserved coupling mechanism. Nat Commun, 2016. 7: p. 13596. 24. Ottmann, C., et al., Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+ -ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol Cell, 2007. 25(3): p. 427-40. 25. Pizzio, G.A., K.D. Hirschi, and R.A. Gaxiola, Conjecture Regarding Posttranslational Modifications to the Arabidopsis Type I Proton-Pumping Pyrophosphatase (AVP1). Front Plant Sci, 2017. 8: p. 1572. 26. Hsu, Y.D., et al., Regulation of H(+)-pyrophosphatase by 14-3-3 Proteins from Arabidopsis thaliana. J Membr Biol, 2018. 251(2): p. 263-276. 27. Bartolommei, G., M.R. Moncelli, and F. Tadini-Buoninsegni, A method to measure hydrolytic activity of adenosinetriphosphatases (ATPases). PLoS One, 2013. 8(3): p. e58615. 28. R. Darı´o Falcone, et al., Acid-Base and Aggregation Processes of Acridine Orange Base in n-Heptane/AOT/Water Reverse Micelles. Langmuir, 2002. 18(6): p. 2039-2047. 29. Han, J. and K. Burgess, Fluorescent Indicators for Intracellular pH. Chem. Rev., 2010. 110(5): p. 2709-2728. 30. Millot C, et al., Characterization of Acidic Vesicles in Multidrug-resistant and Sensitive Cancer Cells by Acridine Orange Staining and Confocal Microspectrofluorometry. J Histochem Cytochem., 1997. 45(9): p. 1255-1264. 31. Kelkar, D.A. and A. Chattopadhyay, The gramicidin ion channel: a model membrane protein. Biochim Biophys Acta, 2007. 1768(9): p. 2011-25. 32. Laemmli UK, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970. 227(5259): p. 680-685. 33. Bradford MM, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976. 72: p. 248-254. 34. Hsiao, Y.Y., et al., Functional roles of arginine residues in mung bean vacuolar H+-pyrophosphatase. Biochim Biophys Acta, 2007. 1767(7): p. 965-73. 35. BW., M., Solvent Content of Protein Crystals. J. Mol. Biol., 1968. 33(2): p. 497-497. 36. Weichenberger, C.X. and B. Rupp, Ten years of probabilistic estimates of biocrystal solvent content: new insights via nonparametric kernel density estimate. Acta Crystallogr D Biol Crystallogr, 2014. 70(Pt 6): p. 1579-88. 37. Kantardjieff, K.A. and B. Rupp, Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci, 2003. 12(9): p. 1865-71. 38. Ferjani, A., et al., Keep an eye on PPi: the vacuolar-type H+-pyrophosphatase regulates postgerminative development in Arabidopsis. Plant Cell, 2011. 23(8): p. 2895-908. 39. Asaoka, M., S. Segami, and M. Maeshima, Identification of the critical residues for the function of vacuolar H(+)-pyrophosphatase by mutational analysis based on the 3D structure. J Biochem, 2014. 156(6): p. 333-44. 40. Alexander A. Baykov, et al., Differential sensitivity of membrane-associated pyrophosphatases to inhibition by diphosphonates and fluoride delineates two classes of enzyme. FEBS J, 1993. 327(2): p. 199-202.
|