帳號:guest(18.118.146.183)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):傅晟翔
作者(外文):Fu, Chung-Siaung
論文名稱(中文):新型抗蛇毒血清製備及效價分析
論文名稱(外文):Manufacture and titer assay of New-type antivenom
指導教授(中文):蘇士哲
指導教授(外文):Sue, Shih-Che
口試委員(中文):吳文桂
簡昆鎰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:105080525
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:89
中文關鍵詞:抗蛇毒血清粗蛇毒心臟毒素神經毒素馬血清
外文關鍵詞:AntivenomCrude venomCardiotoxinNeurotoxinHorse serum
相關次數:
  • 推薦推薦:0
  • 點閱點閱:385
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在2009年世界衛生組織已把蛇傷歸類於被忽視的熱帶疾病,世界各地每年將近540萬起蛇咬傷事件,並造成8萬至14萬的死亡人數,更有死亡數三倍的人們飽受截肢之苦,面臨永久性殘疾,因此具備有效用的抗蛇毒血清是必要的,在台灣每年約有1000筆蛇傷案例,其中眼鏡蛇因數量較多且與人們生活環境重疊,為常見咬傷案例的蛇種。
台灣眼鏡蛇毒主要毒性成分為心臟毒素、神經毒素及磷酸水解酶A2,先前有研究指出,現今市面上利用粗蛇毒做抗原,進行免疫所生產出的抗蛇毒血清,主要認含量少且較無毒性的高分子量蛋白,而相較之下,毒性較強蛋白部分,反而血清辨認能力較弱。同時研究指出,若單純利用心臟毒素、神經毒素及磷酸水解酶A2做抗原,生產出的血清會大幅改善此問題,並有效提升血清的效價。且若抗原中添加Scrambled CTXA3製造出的血清,會增加認心臟毒素的種類,因此我們團隊利用主成分為心臟毒素、神經毒素及磷酸水解酶A2的免疫原,生產出對粗蛇毒有更高中和效價的增效型血清及近一步在免疫成分加了Scrambled CTXA3的廣效型血清,在對各型的血清利用HPLC抗蛇毒血清分析技術、酵素免疫吸附法及小鼠實驗來進一步分析中和活性,並比較這些技術的優點。最後,透過ELISA和NMR滴定實驗研究神經毒素的抗原決定位。
The World Health Organization already classified snake injuries as a neglected tropical disease in 2009. Near 5.4 million snake bites occur every year in the world, causing 80,000 to 140,000 deaths and more than three times of people suffering from amputation and permanent disability. Thus, to prepare an effective antivenom is essential. There are about 1,000 cases of snake injuries each year in Taiwan. Among them, the injuries caused from Taiwan cobra is relatively common because the higher population and living area overlapping with human living environment. The main toxic components of cobra venom are cardiotoxin, neurotoxin and phospholipase A2. Literatures have reported that the current antivenom on the market mainly recognizes the high-molecular proteins in cobra venom, which is less toxic and with very low ratio. In contrast, the toxic part is less recognized. Here, we perform a study to manufacture new-type antivenom by only immunizing cardiotoxin, neurotoxin and phospholipase A2. The strategy improves the yield of antivenom production and meanwhile, effectively increases the serum titer. We also test another procedure by adding scrambled cardiotoxin A3 into the antigen to enhance the ability of serum to recognize all types of cardiotoxins. The different antivenom are produced by immunizing horses. The antigen containing only cardiotoxin, neurotoxin and phosphohydrolase A2 creates synergistic effect in neutralizing crude venom. The antigen further including scrambled CTXA3 therefore demonstrate broad effect. The serum of each preparation is analyzed by HPLC antivenom analysis method, ELISA and animal test to define the neutralization activity. We compare the advantages of the individual methods. In final, the epitope of neurotoxin is explored by ELISA and NMR titration experiments.
目錄
ABSTRACT I
中文摘要 II
中英對照表 III
英文縮寫 VI
第一章、 前言 1
1-1蛇毒 1
1-2台灣眼鏡蛇毒蛋白組成成分 2
1-2-1神經毒素 2
1-2-2心臟毒素 3
1-2-3磷酸水解酶A2 4
1-2-4高分子量蛋白 4
1-3抗蛇毒血清 5
1-4馬匹血清製成 6
1-5眼鏡蛇抗蛇毒血清遭遇困境 6
1-6研究目的 7
第二章、 材料與方法 12
2-1原料製備 12
2-1-1 神經毒素純化 12
2-1-2 馬血清IgG抗體純化 12
2-1-3 神經、心臟毒素胜肽製備 13
2-1-4 蛋白質表現以及純化 13
2-1-5 NMR樣品製備 14
2-2馬匹免疫(疾病管制署協助進行馬匹免疫及採血) 15
2-2-1 對照組 15
2-2-2 增效型組 15
2-2-3 廣效型組 16
2-3抗蛇毒血清和能力分析 (Antivenom分析技術) 17
2-3-1 抗蛇毒血清測試管柱製備 17
2-3-2 分析原料準備過程及Antivenom技術分析 18
2-4酵素免疫吸附法實驗 (ELISA) 19
2-4-1 ELISA實驗過程 19
2-4-2 各週馬血清與粗蛇毒、神經毒素及心臟毒素結合實驗 20
2-4-3 檢測增效型馬血凍晶與三大地區眼鏡粗蛇毒及雨傘節結合實驗 20
2-4-4 神經毒素抗原決定位(epitope)實驗 20
2-5異核氫氮二維核磁共振光譜滴定實驗 21
2-6 小鼠實驗 (委託歐美生技進行) 21
第三章、 結果 33
3-1 Antivenom分析技術 33
3-1-1對照組 33
3-1-2 增效型組 34
3-1-3 廣效型組 35
3-1-4馬血清與NTX及CTX系列蛋白親和能力變化趨勢 36
3-1-5 中途改變施打的免疫原 38
3-2 酵素結合免疫吸附法實驗 (ELISA) 40
3-2-1 各週增效型組及廣效型組馬血清與眼鏡蛇Crude Venom 結合情形 41
3-2-2 各週增效型組及廣效型組馬血清與眼鏡蛇NTX蛋白結合情形 43
3-2-3 各週增效型組及廣效型組馬血清與眼鏡蛇CTXA3蛋白結合情形 45
3-2-4 檢測增效型馬血凍晶與三大地區眼鏡粗蛇毒及雨傘節結合實驗 46
3-2-5 增效型血清進一步純化認神經、心臟毒素胜肽結果 47
3-3異核氫氮二維核磁共振光譜滴定實驗 48
3-4小鼠實驗整理 49
3-4-1對照組 49
3-4-2增效型組 49
3-4-3廣效型組 49
第四章、 討論 72
參考文獻 83

參考文獻

1.Kasturiratne, A., Wickremasinghe, A. R., de Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., et al. (2008). The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS medicine, 5(11), e218.
2.Lee, C.-Y., & Lee, S. (1979). Cardiovascular effects of snake venoms. In Snake venoms (pp. 547-590): Springer.
3.Matsui, T., Fujimura, Y., & Titani, K. (2000). Snake venom proteases affecting hemostasis and thrombosis. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1477(1-2), 146-156.
4.Daltry, J. C., Wüster, W., & Thorpe, R. S. (1996). Diet and snake venom evolution. Nature, 379(6565), 537.
5.Huang, H.-W., Liu, B.-S., Chien, K.-Y., Chiang, L.-C., Huang, S.-Y., Sung, W.-C., et al. (2015). Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. Journal of proteomics, 128, 92-104.
6.Chang, C. (1979). The action of snake venoms on nerve and muscle. In Snake venoms (pp. 309-376): Springer.
7.Wu, W.-G. (1997). Diversity of cobra cardiotoxin. Journal of Toxicology: Toxin Reviews, 16(3), 115-134.
8.Harvey, A. L. (1991). Cardiotoxins from cobra venoms. In Handbook of natural toxins (pp. 85-106): Routledge.
9.Jiang, Y., Li, Y., Lee, W., Xu, X., Zhang, Y., Zhao, R., et al. (2011). Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes. BMC genomics, 12(1), 1.
10.Ranawaka, U. K., Lalloo, D. G., & de Silva, H. J. (2013). Neurotoxicity in snakebite—the limits of our knowledge. PLoS Neglected Tropical Diseases, 7(10), e2302.
11.Lou, X., Tu, X., Pan, G., Xu, C., Fan, R., Lu, W., et al. (2003). Purification, N-terminal sequencing, crystallization and preliminary structural determination of atratoxin-b, a short-chain α-neurotoxin from Naja atra venom. Acta Crystallographica Section D: Biological Crystallography, 59(6), 1038-1042.
12.Nirthanan, S., & Gwee, M. C. (2004). Three-finger α-neurotoxins and the nicotinic acetylcholine receptor, forty years on. Journal of pharmacological sciences, 94(1), 1-17.
13.Tsetlin, V. (1999). Snake venom α‐neurotoxins and other ‘three‐finger’proteins. European Journal of Biochemistry, 264(2), 281-286.
14.Chang, C., & Lee, C. (1966). Electrophysiological study of neuromuscular blocking action of cobra neurotoxin. British journal of pharmacology and chemotherapy, 28(2), 172-181.
15.Dufton, M., & Hider, R. (1983). Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. Critical Reviews in Biochemistry, 14(2), 113-171.
16.Rungsiwongse, J., & Ratanabanangkoon, K. (1991). Development of an ELISA to assess the potency of horse therapeutic antivenom against Thai cobra venom. Journal of immunological methods, 136(1), 37-43.
17.Rees, B., Samama, J., Thierry, J., Gilibert, M., Fischer, J., Schweitz, H., et al. (1987). Crystal structure of a snake venom cardiotoxin. Proceedings of the National Academy of Sciences, 84(10), 3132-3136.
18.Sue, S.-C., Jarrell, H. C., Brisson, J.-R., & Wu, W.-g. (2001). Dynamic characterization of the water binding loop in the P-type cardiotoxin: implication for the role of the bound water molecule. Biochemistry, 40(43), 12782-12794.
19.Gilquin, B., Roumestand, C., Zinn‐Justin, S., Ménez, A., & Toma, F. (1993). Refined three‐dimensional solution structure of a snake cardiotoxin: Analysis of the side‐chain organization suggests the existence of a possible phospholipid binding site. Biopolymers: Original Research on Biomolecules, 33(11), 1659-1675.
20.Lin, S.-R., Chang, K.-L., & Chang, C.-C. (1993). Chemical modification of amino groups in cardiotoxin III from Taiwan cobra Naja naja atra) venom. Biochemistry and molecular biology international, 31(1), 175-184.
21.Kaneda, N., Sasaki, T., & Hayashi, K. (1977). Primary structures of cardiotoxin analogues II and IV from the venom of Naja naja atra. Biochimica et Biophysica Acta (BBA)-Protein Structure, 491(1), 53-66.
22.Chien, K.-Y., Chiang, C.-M., Hseu, Y.-C., Vyas, A. A., Rule, G. S., & Wu, W.-g. (1994). Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. Journal of Biological Chemistry, 269(20), 14473-14483.
23.Yoshida, B. M., Patel, N., & Badrinath, P. (1967). Isolation and properties of a cobravenom factor selectively cytotoxic to yoshida sarcoma cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 136(3), 508-520.
24.Dubovskii, P. V., Lesovoy, D. M., Dubinnyi, M. A., Utkin, Y. N., & Arseniev, A. S. (2003). Interaction of the P‐type cardiotoxin with phospholipid membranes. European journal of biochemistry, 270(9), 2038-2046.
25.Bougis, P., Rochat, H., Pieroni, G., & Verger, R. (1981). Penetration of phospholipid monolayers by cardiotoxins. Biochemistry, 20(17), 4915-4920.
26.Forouhar, F., Huang, W.-N., Liu, J.-H., Chien, K.-Y., Wu, W.-g., & Hsiao, C.-D. (2003). Structural basis of membrane-induced cardiotoxin A3 oligomerization. Journal of Biological Chemistry, 278(24), 21980-21988.
27.Teng, C.-M., Jy, W., & Ouyang, C. (1984). Cardiotoxin from Naja naja atra snake venom: a potentiator of platelet aggregation. Toxicon, 22(3), 463-470.
28.Möllmann, U., Gutsche, W., Maltz, L., & Ovadia, M. (1997). Activity of cytotoxin P4 from the venom of the cobra snake Naja nigricollis on gram-positive bacteria and eukaryotic cell lines. Arzneimittel-Forschung, 47(5), 671-673.
29.Ho, C.-L., Lee, C., & Lu, H. (1975). Electrophysiological effects of cobra cardiotoxin on rabbit heart cells. Toxicon, 13(6), 437-446.
30.Ownby, C. L., Fletcher, J. E., & Colberg, T. R. (1993). Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon, 31(6), 697-709.
31.Zhang, B., Li, F., Chen, Z., Shrivastava, I. H., Gasanoff, E. S., & Dagda, R. K. (2019). Naja mossambica mossambica Cobra Cardiotoxin Targets Mitochondria to Disrupt Mitochondrial Membrane Structure and Function. Toxins, 11(3), 152.
32.Jiang, C., Xiong, W., Lu, B.-Y., Gonda, M. A., & Chang, J.-Y. (2010). Synthesis and immune response of non-native isomers of vascular endothelial growth factor. Biochemistry, 49(31), 6550-6556.
33.孙明忠, 丁兰, 赵大庆, & 倪嘉缵. (1999). 长白山白眉蝮蛇蛇毒磷脂酶 A2 的分离和初步表征. 生物化学与生物物理学报, 31(1), 104.
34.Hseu, Y., & WU, W. (1995). INTERACTION BETWEEN CARDIOTOXINS AND PHOSPHOLIPASE-A2 IN MEMBRANES AS REVEALED BY THE SYNERGISTIC EFFECT OF THEIR IN-VITRO ACTIVITY. Paper presented at the FASEB JOURNAL.
35.Dart, R. C. (2004). Medical toxicology: Lippincott Williams & Wilkins.
36.Gad, S. C. (2007). Handbook of pharmaceutical biotechnology (Vol. 2): John Wiley & Sons.
37.Del Brutto, O. H. (2013). Neurological effects of venomous bites and stings: snakes, spiders, and scorpions. In Handbook of clinical neurology (Vol. 114, pp. 349-368): Elsevier.
38.謝文欽,陳昭宏,許靜侖,王瓊儀,劉健信 (2017) 不同飯匙倩蛇毒抗原免疫劑
量誘導馬匹產生中和抗體的影響評估 衛生福利部疾病管制署
39.Stuart, M. C., Kouimtzi, M., & Hill, S. R. (2009). WHO model formulary 2008: World
Health Organization.
40.Herrera, M., Sánchez, M., Machado, A., Ramírez, N., Vargas, M., Villalta, M., et al. (2017). Effect of premedication with subcutaneous adrenaline on the pharmacokinetics and immunogenicity of equine whole IgG antivenom in a rabbit model. Biomedicine & Pharmacotherapy, 90, 740-743
41.Baum, R., Bronner, J., Akpunonu, P., Plott, J., Bailey, A., & Keyler, D. (2019). Crotalus durissus terrificus (viperidae; crotalinae) envenomation: Respiratory failure and treatment with antivipmyn TRI® antivenom. Toxicon.
42.Kitchens, C. S., & Eskin, T. A. (2008). Fatality in a case of envenomation byCrotalus adamanteus initially successfully treated with polyvalent ovine antivenom followed by recurrence of defibrinogenation syndrome. Journal of Medical Toxicology, 4(3), 180-183.
43.Warrell, D. A. (2010). Snake bite. The Lancet, 375(9708), 77-88.
44.Kikuchi, H. (1987). Study on the effectiveness of the Yamakagashi (Rhabdophis Tigrinus). The Snake, 19, 95-98.
45.Morokuma, K., Kobori, N., Fukuda, T., Uchida, T., Sakai, A., Toriba, M., et al. (2011). Experimental manufacture of equine antivenom against yamakagashi (Rhabdophis tigrinus). Jpn J Infect Dis, 64(5), 397-402.
46.Yamamoto, S., Kawabata, N., Tamura, A., Urakami, H., Ohashi, N., Murata, M., et al. (1986). ————‐Immunological Properties of Rickettsia tsutsugamushi Kawasaki Strain, Isolated from a Patient in Kyushu. Microbiology and immunology, 30(7), 611-620.
47.Pepin, S., Lutsch, C., Grandgeorge, M., & Scherrmann, J.-M. (1995). Snake F (ab′) 2 antivenom from hyperimmunized horse: pharmacokinetics following intravenous and intramuscular administrations in rabbits. Pharmaceutical research, 12(10), 1470-1473.
48.Zhang, J. (2011). The structural stability of wild-type horse prion protein. Journal of Biomolecular Structure and Dynamics, 29(2), 369-377.
49.林韋萱 (2012) 救命任務抗蛇毒血清的旅程
50.Shan, L.-L., Gao, J.-F., Zhang, Y.-X., Shen, S.-S., He, Y., Wang, J., et al. (2016).
Proteomic characterization and comparison of venoms from two elapid
snakes (Bungarus multicinctus and Naja atra) from China. Journal of
proteomics, 138, 83-94.
51.Pla, D., Gutiérrez, J. M., & Calvete, J. J. (2012). Second generation snake antivenomics: comparing immunoaffinity and immunodepletion protocols. Toxicon, 60(4), 688-699.
52.Mordvintsev, D. Y., Polyak, Y. L., Levtsova, O. V., Tourleigh, Y. V., Kasheverov, I., Shaitan, K. V., et al. (2005). A model for short α-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain α-neurotoxins and α-conotoxins. Computational biology and chemistry, 29(6), 398-411.
53.Liu, B.-S., Wu, W.-G., Lin, M.-H., Li, C.-H., Jiang, B.-R., Wu, S.-C., et al. (2017). Identification of immunoreactive peptides of toxins to simultaneously assess the neutralization potency of antivenoms against neurotoxicity and cytotoxicity of naja atra venom. Toxins, 10(1), 10.
54.Engmark, M., Jespersen, M. C., Lomonte, B., Lund, O., & Laustsen, A. H. (2017). High-density peptide microarray exploration of the antibody response in a rabbit immunized with a neurotoxic venom fraction. Toxicon, 138, 151-158.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *