|
參考文獻
1.Kasturiratne, A., Wickremasinghe, A. R., de Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., et al. (2008). The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS medicine, 5(11), e218. 2.Lee, C.-Y., & Lee, S. (1979). Cardiovascular effects of snake venoms. In Snake venoms (pp. 547-590): Springer. 3.Matsui, T., Fujimura, Y., & Titani, K. (2000). Snake venom proteases affecting hemostasis and thrombosis. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1477(1-2), 146-156. 4.Daltry, J. C., Wüster, W., & Thorpe, R. S. (1996). Diet and snake venom evolution. Nature, 379(6565), 537. 5.Huang, H.-W., Liu, B.-S., Chien, K.-Y., Chiang, L.-C., Huang, S.-Y., Sung, W.-C., et al. (2015). Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. Journal of proteomics, 128, 92-104. 6.Chang, C. (1979). The action of snake venoms on nerve and muscle. In Snake venoms (pp. 309-376): Springer. 7.Wu, W.-G. (1997). Diversity of cobra cardiotoxin. Journal of Toxicology: Toxin Reviews, 16(3), 115-134. 8.Harvey, A. L. (1991). Cardiotoxins from cobra venoms. In Handbook of natural toxins (pp. 85-106): Routledge. 9.Jiang, Y., Li, Y., Lee, W., Xu, X., Zhang, Y., Zhao, R., et al. (2011). Venom gland transcriptomes of two elapid snakes (Bungarus multicinctus and Naja atra) and evolution of toxin genes. BMC genomics, 12(1), 1. 10.Ranawaka, U. K., Lalloo, D. G., & de Silva, H. J. (2013). Neurotoxicity in snakebite—the limits of our knowledge. PLoS Neglected Tropical Diseases, 7(10), e2302. 11.Lou, X., Tu, X., Pan, G., Xu, C., Fan, R., Lu, W., et al. (2003). Purification, N-terminal sequencing, crystallization and preliminary structural determination of atratoxin-b, a short-chain α-neurotoxin from Naja atra venom. Acta Crystallographica Section D: Biological Crystallography, 59(6), 1038-1042. 12.Nirthanan, S., & Gwee, M. C. (2004). Three-finger α-neurotoxins and the nicotinic acetylcholine receptor, forty years on. Journal of pharmacological sciences, 94(1), 1-17. 13.Tsetlin, V. (1999). Snake venom α‐neurotoxins and other ‘three‐finger’proteins. European Journal of Biochemistry, 264(2), 281-286. 14.Chang, C., & Lee, C. (1966). Electrophysiological study of neuromuscular blocking action of cobra neurotoxin. British journal of pharmacology and chemotherapy, 28(2), 172-181. 15.Dufton, M., & Hider, R. (1983). Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. Critical Reviews in Biochemistry, 14(2), 113-171. 16.Rungsiwongse, J., & Ratanabanangkoon, K. (1991). Development of an ELISA to assess the potency of horse therapeutic antivenom against Thai cobra venom. Journal of immunological methods, 136(1), 37-43. 17.Rees, B., Samama, J., Thierry, J., Gilibert, M., Fischer, J., Schweitz, H., et al. (1987). Crystal structure of a snake venom cardiotoxin. Proceedings of the National Academy of Sciences, 84(10), 3132-3136. 18.Sue, S.-C., Jarrell, H. C., Brisson, J.-R., & Wu, W.-g. (2001). Dynamic characterization of the water binding loop in the P-type cardiotoxin: implication for the role of the bound water molecule. Biochemistry, 40(43), 12782-12794. 19.Gilquin, B., Roumestand, C., Zinn‐Justin, S., Ménez, A., & Toma, F. (1993). Refined three‐dimensional solution structure of a snake cardiotoxin: Analysis of the side‐chain organization suggests the existence of a possible phospholipid binding site. Biopolymers: Original Research on Biomolecules, 33(11), 1659-1675. 20.Lin, S.-R., Chang, K.-L., & Chang, C.-C. (1993). Chemical modification of amino groups in cardiotoxin III from Taiwan cobra Naja naja atra) venom. Biochemistry and molecular biology international, 31(1), 175-184. 21.Kaneda, N., Sasaki, T., & Hayashi, K. (1977). Primary structures of cardiotoxin analogues II and IV from the venom of Naja naja atra. Biochimica et Biophysica Acta (BBA)-Protein Structure, 491(1), 53-66. 22.Chien, K.-Y., Chiang, C.-M., Hseu, Y.-C., Vyas, A. A., Rule, G. S., & Wu, W.-g. (1994). Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. Journal of Biological Chemistry, 269(20), 14473-14483. 23.Yoshida, B. M., Patel, N., & Badrinath, P. (1967). Isolation and properties of a cobravenom factor selectively cytotoxic to yoshida sarcoma cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 136(3), 508-520. 24.Dubovskii, P. V., Lesovoy, D. M., Dubinnyi, M. A., Utkin, Y. N., & Arseniev, A. S. (2003). Interaction of the P‐type cardiotoxin with phospholipid membranes. European journal of biochemistry, 270(9), 2038-2046. 25.Bougis, P., Rochat, H., Pieroni, G., & Verger, R. (1981). Penetration of phospholipid monolayers by cardiotoxins. Biochemistry, 20(17), 4915-4920. 26.Forouhar, F., Huang, W.-N., Liu, J.-H., Chien, K.-Y., Wu, W.-g., & Hsiao, C.-D. (2003). Structural basis of membrane-induced cardiotoxin A3 oligomerization. Journal of Biological Chemistry, 278(24), 21980-21988. 27.Teng, C.-M., Jy, W., & Ouyang, C. (1984). Cardiotoxin from Naja naja atra snake venom: a potentiator of platelet aggregation. Toxicon, 22(3), 463-470. 28.Möllmann, U., Gutsche, W., Maltz, L., & Ovadia, M. (1997). Activity of cytotoxin P4 from the venom of the cobra snake Naja nigricollis on gram-positive bacteria and eukaryotic cell lines. Arzneimittel-Forschung, 47(5), 671-673. 29.Ho, C.-L., Lee, C., & Lu, H. (1975). Electrophysiological effects of cobra cardiotoxin on rabbit heart cells. Toxicon, 13(6), 437-446. 30.Ownby, C. L., Fletcher, J. E., & Colberg, T. R. (1993). Cardiotoxin 1 from cobra (Naja naja atra) venom causes necrosis of skeletal muscle in vivo. Toxicon, 31(6), 697-709. 31.Zhang, B., Li, F., Chen, Z., Shrivastava, I. H., Gasanoff, E. S., & Dagda, R. K. (2019). Naja mossambica mossambica Cobra Cardiotoxin Targets Mitochondria to Disrupt Mitochondrial Membrane Structure and Function. Toxins, 11(3), 152. 32.Jiang, C., Xiong, W., Lu, B.-Y., Gonda, M. A., & Chang, J.-Y. (2010). Synthesis and immune response of non-native isomers of vascular endothelial growth factor. Biochemistry, 49(31), 6550-6556. 33.孙明忠, 丁兰, 赵大庆, & 倪嘉缵. (1999). 长白山白眉蝮蛇蛇毒磷脂酶 A2 的分离和初步表征. 生物化学与生物物理学报, 31(1), 104. 34.Hseu, Y., & WU, W. (1995). INTERACTION BETWEEN CARDIOTOXINS AND PHOSPHOLIPASE-A2 IN MEMBRANES AS REVEALED BY THE SYNERGISTIC EFFECT OF THEIR IN-VITRO ACTIVITY. Paper presented at the FASEB JOURNAL. 35.Dart, R. C. (2004). Medical toxicology: Lippincott Williams & Wilkins. 36.Gad, S. C. (2007). Handbook of pharmaceutical biotechnology (Vol. 2): John Wiley & Sons. 37.Del Brutto, O. H. (2013). Neurological effects of venomous bites and stings: snakes, spiders, and scorpions. In Handbook of clinical neurology (Vol. 114, pp. 349-368): Elsevier. 38.謝文欽,陳昭宏,許靜侖,王瓊儀,劉健信 (2017) 不同飯匙倩蛇毒抗原免疫劑 量誘導馬匹產生中和抗體的影響評估 衛生福利部疾病管制署 39.Stuart, M. C., Kouimtzi, M., & Hill, S. R. (2009). WHO model formulary 2008: World Health Organization. 40.Herrera, M., Sánchez, M., Machado, A., Ramírez, N., Vargas, M., Villalta, M., et al. (2017). Effect of premedication with subcutaneous adrenaline on the pharmacokinetics and immunogenicity of equine whole IgG antivenom in a rabbit model. Biomedicine & Pharmacotherapy, 90, 740-743 41.Baum, R., Bronner, J., Akpunonu, P., Plott, J., Bailey, A., & Keyler, D. (2019). Crotalus durissus terrificus (viperidae; crotalinae) envenomation: Respiratory failure and treatment with antivipmyn TRI® antivenom. Toxicon. 42.Kitchens, C. S., & Eskin, T. A. (2008). Fatality in a case of envenomation byCrotalus adamanteus initially successfully treated with polyvalent ovine antivenom followed by recurrence of defibrinogenation syndrome. Journal of Medical Toxicology, 4(3), 180-183. 43.Warrell, D. A. (2010). Snake bite. The Lancet, 375(9708), 77-88. 44.Kikuchi, H. (1987). Study on the effectiveness of the Yamakagashi (Rhabdophis Tigrinus). The Snake, 19, 95-98. 45.Morokuma, K., Kobori, N., Fukuda, T., Uchida, T., Sakai, A., Toriba, M., et al. (2011). Experimental manufacture of equine antivenom against yamakagashi (Rhabdophis tigrinus). Jpn J Infect Dis, 64(5), 397-402. 46.Yamamoto, S., Kawabata, N., Tamura, A., Urakami, H., Ohashi, N., Murata, M., et al. (1986). ————‐Immunological Properties of Rickettsia tsutsugamushi Kawasaki Strain, Isolated from a Patient in Kyushu. Microbiology and immunology, 30(7), 611-620. 47.Pepin, S., Lutsch, C., Grandgeorge, M., & Scherrmann, J.-M. (1995). Snake F (ab′) 2 antivenom from hyperimmunized horse: pharmacokinetics following intravenous and intramuscular administrations in rabbits. Pharmaceutical research, 12(10), 1470-1473. 48.Zhang, J. (2011). The structural stability of wild-type horse prion protein. Journal of Biomolecular Structure and Dynamics, 29(2), 369-377. 49.林韋萱 (2012) 救命任務抗蛇毒血清的旅程 50.Shan, L.-L., Gao, J.-F., Zhang, Y.-X., Shen, S.-S., He, Y., Wang, J., et al. (2016). Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. Journal of proteomics, 138, 83-94. 51.Pla, D., Gutiérrez, J. M., & Calvete, J. J. (2012). Second generation snake antivenomics: comparing immunoaffinity and immunodepletion protocols. Toxicon, 60(4), 688-699. 52.Mordvintsev, D. Y., Polyak, Y. L., Levtsova, O. V., Tourleigh, Y. V., Kasheverov, I., Shaitan, K. V., et al. (2005). A model for short α-neurotoxin bound to nicotinic acetylcholine receptor from Torpedo californica: comparison with long-chain α-neurotoxins and α-conotoxins. Computational biology and chemistry, 29(6), 398-411. 53.Liu, B.-S., Wu, W.-G., Lin, M.-H., Li, C.-H., Jiang, B.-R., Wu, S.-C., et al. (2017). Identification of immunoreactive peptides of toxins to simultaneously assess the neutralization potency of antivenoms against neurotoxicity and cytotoxicity of naja atra venom. Toxins, 10(1), 10. 54.Engmark, M., Jespersen, M. C., Lomonte, B., Lund, O., & Laustsen, A. H. (2017). High-density peptide microarray exploration of the antibody response in a rabbit immunized with a neurotoxic venom fraction. Toxicon, 138, 151-158.
|