|
1. Miller, L.G., Hajjeh, R.A. & Edwards, J.E. Estimating the cost of nosocomial candidemia in the united states. Clin Infect Dis 32, 1110 (2001). 2. Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 20 Suppl 6, 5-10 (2014). 3. Pfaller, M.A. & Diekema, D.J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20, 133-63 (2007). 4. Neofytos, D. et al. Epidemiology, outcomes, and risk factors of invasive fungal infections in adult patients with acute myelogenous leukemia after induction chemotherapy. Diagn Microbiol Infect Dis 75, 144-9 (2013). 5. Boos, C., Kujath, P. & Bruch, H.P. [Intra-abdominal mycoses]. Mycoses 48 Suppl 1, 22-6 (2005). 6. Mishra, N.N. et al. Pathogenicity and drug resistance in Candida albicans and other yeast species. A review. Acta Microbiol Immunol Hung 54, 201-35 (2007). 7. Cowen, L.E., Anderson, J.B. & Kohn, L.M. Evolution of drug resistance in Candida albicans. Annu Rev Microbiol 56, 139-65 (2002). 8. Ford, C.B. et al. The evolution of drug resistance in clinical isolates of Candida albicans. Elife 4, e00662 (2015). 9. Ghannoum, M.A. & Rice, L.B. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12, 501-17 (1999). 10. Roemer, T. & Krysan, D.J. Antifungal Drug Development: Challenges, Unmet Clinical Needs, and New Approaches. Cold Spring Harbor Perspectives in Medicine 4, a019703 (2014). 11. Lohse, M.B., Gulati, M., Johnson, A.D. & Nobile, C.J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol 16, 19-31 (2018). 12. Costerton, J.W., Stewart, P.S. & Greenberg, E.P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318-1322 (1999). 13. Kostakioti, M., Hadjifrangiskou, M. & Hultgren, S.J. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine 3, a010306 (2013). 14. Conlon, B.P. et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503, 365 (2013). 15. Chandra, J. et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183, 5385-94 (2001). 16. Fox, E.P. & Nobile, C.J. A sticky situation: Untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription 3, 315-322 (2012). 17. Ramage, G., Martínez, J.P. & López-Ribot, J.L. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6, 979-86 (2006). 18. Donlan, R.M. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33, 1387-92 (2001). 19. Lebeaux, D., Ghigo, J.-M. & Beloin, C. Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics. Microbiology and Molecular Biology Reviews : MMBR 78, 510-543 (2014). 20. Kumamoto, C.A. & Vinces, M.D. Alternative Candida albicans lifestyles: growth on surfaces. Annu. Rev. Microbiol. 59, 113-133 (2005). 21. Mayer, F.L., Wilson, D. & Hube, B. Candida albicans pathogenicity mechanisms. Virulence 4, 119-28 (2013). 22. Radek, K. & Gallo, R. Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29, 27-43 (2007). 23. Peters, B.M., Shirtliff, M.E. & Jabra-Rizk, M.A. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6, e1001067 (2010). 24. CAPRA, J.D., Janeway, C.A., Travers, P. & Walport, M. Inmunobiology: the inmune system in health and disease, (Garland Publishing, 1999). 25. Lai, Y. & Gallo, R.L. AMPed Up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends in immunology 30, 131-141 (2009). 26. Hancock, R.E.W. & Sahl, H.-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24, 1551-7 (2006). 27. Hancock, R.E. & Lehrer, R. Cationic peptides: a new source of antibiotics. Trends Biotechnol 16, 82-8 (1998). 28. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389-95 (2002). 29. Bahar, A.A. & Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel) 6, 1543-75 (2013). 30. Wang, G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 7, 545-94 (2014). 31. Midura-Nowaczek, K. & Markowska, A. Antimicrobial peptides and their analogs: searching for new potential therapeutics. Perspect Medicin Chem 6, 73-80 (2014). 32. Oppenheim, F.G. et al. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 263, 7472-7 (1988). 33. Campese, M., Sun, X., Bosch, J.A., Oppenheim, F.G. & Helmerhorst, E.J. Concentration and Fate of Histatins and Acidic Proline-rich Proteins in the Oral Environment. Archives of oral biology 54, 345-353 (2009). 34. Sabatini, L.M. & Azen, E.A. Histatins, a family of salivary histidine-rich proteins, are encoded by at least two loci (HIS1 and HIS2). Biochem Biophys Res Commun 160, 495-502 (1989). 35. Puri, S. & Edgerton, M. How does it kill?: understanding the candidacidal mechanism of salivary histatin 5. Eukaryot Cell 13, 958-64 (2014). 36. Xu, T., Levitz, S.M., Diamond, R.D. & Oppenheim, F.G. Anticandidal activity of major human salivary histatins. Infect Immun 59, 2549-54 (1991). 37. Helmerhorst, E.J. et al. Amphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob Agents Chemother 43, 702-4 (1999). 38. Rothstein, D.M. et al. Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother 45, 1367-73 (2001). 39. Jang, W.S., Li, X.S., Sun, J.N. & Edgerton, M. The P-113 fragment of histatin 5 requires a specific peptide sequence for intracellular translocation in Candida albicans, which is independent of cell wall binding. Antimicrob Agents Chemother 52, 497-504 (2008). 40. Lin, G.-Y. et al. The Antimicrobial Peptides P-113Du and P-113Tri Function against Candida albicans. Antimicrob Agents Chemother 60, 6369-73 (2016). 41. Barrientos, A. In vivo and in organello assessment of OXPHOS activities. Methods 26, 307-16 (2002). 42. Weinberg, S.E. & Chandel, N.S. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11, 9-15 (2015). 43. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem J 417, 1-13 (2009). 44. Chen, Y.-R. & Zweier, J.L. Cardiac mitochondria and reactive oxygen species generation. Circ Res 114, 524-37 (2014). 45. Hirst, J. Mitochondrial complex I. Annu Rev Biochem 82, 551-75 (2013). 46. Brandt, U. Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75, 69-92 (2006). 47. Dudkina, N.V., Eubel, H., Keegstra, W., Boekema, E.J. & Braun, H.-P. Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci U S A 102, 3225-9 (2005). 48. Valsecchi, F. et al. Complex I disorders: causes, mechanisms, and development of treatment strategies at the cellular level. Dev Disabil Res Rev 16, 175-82 (2010). 49. Degli Esposti, M. Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364, 222-35 (1998). 50. Okun, J.G., Lummen, P. & Brandt, U. Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase). J Biol Chem 274, 2625-30 (1999). 51. Horgan, D.J., Singer, T.P. & Casida, J.E. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. 13. Binding sites of rotenone, piericidin A, and amytal in the respiratory chain. J Biol Chem 243, 834-43 (1968). 52. Li, D. et al. Enzymatic dysfunction of mitochondrial complex I of the Candida albicans goa1 mutant is associated with increased reactive oxidants and cell death. Eukaryot Cell 10, 672-82 (2011). 53. Li, D., She, X. & Calderone, R. Functional diversity of complex I subunits in Candida albicans mitochondria. Curr Genet 62, 87-95 (2016). 54. Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55, 373-99 (2004). 55. Sazanov, L.A. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46, 2275-88 (2007). 56. Kussmaul, L. & Hirst, J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A 103, 7607-12 (2006). 57. Hirst, J., King, M.S. & Pryde, K.R. The production of reactive oxygen species by complex I. (Portland Press Limited, 2008). 58. Nimse, S.B. & Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances 5, 27986-28006 (2015). 59. Ray, P.D., Huang, B.-W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24, 981-90 (2012). 60. Sies, H. Oxidative stress: oxidants and antioxidants. Exp Physiol 82, 291-5 (1997). 61. Shahidi, F. & Zhong, Y. Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology 112, 930-940 (2010). 62. Bendich, A., Machlin, L., Scandurra, O., Burton, G. & Wayner, D. The antioxidant role of vitamin C. Advances in Free Radical Biology & Medicine 2, 419-444 (1986). 63. Gillum, A.M., Tsay, E.Y. & Kirsch, D.R. Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198, 179-82 (1984). 64. Luttik, M.A. et al. The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273, 24529-34 (1998). 65. Noble, S.M., French, S., Kohn, L.A., Chen, V. & Johnson, A.D. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42, 590-8 (2010). 66. Chen, H.-F. & Lan, C.-Y. Role of SFP1 in the Regulation of Candida albicans Biofilm Formation. PLoS One 10, e0129903 (2015). 67. Yu, H.Y. et al. Easy strategy to increase salt resistance of antimicrobial peptides. Antimicrob Agents Chemother 55, 4918-21 (2011). 68. John H. Rex, M.A.G. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Third Edition. (2008 ). 69. Wang, X. & Moraes, C.T. Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Mol Oncol 5, 399-409 (2011). 70. Welling, M.M., Brouwer, C.P.J.M., van 't Hof, W., Veerman, E.C.I. & Amerongen, A.V.N. Histatin-derived monomeric and dimeric synthetic peptides show strong bactericidal activity towards multidrug-resistant Staphylococcus aureus in vivo. Antimicrob Agents Chemother 51, 3416-9 (2007). 71. Gao, H.-W. et al. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase. Blood Transfusion 12, 61 (2014). 72. Thibane, V.S., Kock, J.L., Ells, R., van Wyk, P.W. & Pohl, C.H. Effect of marine polyunsaturated fatty acids on biofilm formation of Candida albicans and Candida dubliniensis. Mar Drugs 8, 2597-604 (2010). 73. De Nollin, S. & Borgers, M. Scanning electron microscopy of Candida albicans after in vitro treatment with miconazole. Antimicrobial agents and chemotherapy 7, 704-711 (1975). 74. Oh, Y. & Bi, E. Septin structure and function in yeast and beyond. Trends Cell Biol 21, 141-8 (2011). 75. Calahorra, M., Sánchez, N.S. & Peña, A. Characterization of glycolytic metabolism and ion transport of Candida albicans. Yeast 29, 357-70 (2012). 76. She, X. et al. A mitochondrial proteomics view of complex I deficiency in Candida albicans. Mitochondrion 38, 48-57 (2018). 77. Sun, N. et al. Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants. Antimicrob Agents Chemother 57, 532-42 (2013). 78. Nicaud, J.-M. Yarrowia lipolytica. Yeast 29, 409-18 (2012). 79. Fassone, E. & Rahman, S. Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet 49, 578-90 (2012). 80. Veiga, A., Arrabaça, J.D. & Loureiro-Dias, M.C. Cyanide-resistant respiration, a very frequent metabolic pathway in yeasts. FEMS Yeast Res 3, 239-45 (2003). 81. de Vries, S. & Grivell, L.A. Purification and characterization of a rotenone-insensitive NADH:Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. Eur J Biochem 176, 377-84 (1988). 82. Helmerhorst, E.J., Murphy, M.P., Troxler, R.F. & Oppenheim, F.G. Characterization of the mitochondrial respiratory pathways in Candida albicans. Biochim Biophys Acta 1556, 73-80 (2002). 83. Kang, P.T., Yun, J., Kaumaya, P.P.T. & Chen, Y.-R. Design and use of peptide-based antibodies decreasing superoxide production by mitochondrial complex I and complex II. Biopolymers 96, 207-21 (2011). 84. Birrell, J.A., Yakovlev, G. & Hirst, J. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen. Biochemistry 48, 12005-13 (2009). 85. Marnett, L.J. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 424, 83-95 (1999). 86. Davila, M.P., Muñoz, P.M., Tapia, J.A., Ferrusola, C.O. & Peña, F.J. Inhibition of mitochondrial complex I leads to decreased motility and membrane integrity related to increased hydrogen peroxide and reduced ATP production, while the inhibition of glycolysis has less impact on sperm motility. PloS one 10, e0138777 (2015). 87. Bondaryk, M., Staniszewska, M., Zielińska, P. & Urbańczyk-Lipkowska, Z. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. Journal of Fungi 3, 46 (2017). 88. Vandeputte, P., Ferrari, S. & Coste, A.T. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012, 713687 (2012). 89. Zharova, T.V. & Vinogradov, A.D. A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) by ADP-ribose. Biochim Biophys Acta 1320, 256-64 (1997). 90. Kean, E.A., Gutman, M. & Singer, T.P. Studies on the respiratory chain-linked nicotinamide adenine dinucleotide dehydrogenase. XXII. Rhein, a competitive inhibitor of the dehydrogenase. J Biol Chem 246, 2346-53 (1971). 91. Kotlyar, A.B., Karliner, J.S. & Cecchini, G. A novel strong competitive inhibitor of complex I. FEBS Lett 579, 4861-6 (2005). 92. Brown, A.J.P., Brown, G.D., Netea, M.G. & Gow, N.A.R. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol 22, 614-22 (2014). 93. Li, D. & Calderone, R. Exploiting mitochondria as targets for the development of new antifungals. Virulence 8, 159-168 (2017). 94. Shingu-Vazquez, M. & Traven, A. Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot Cell 10, 1376-83 (2011). 95. McLellan, C.A. et al. Inhibiting mitochondrial phosphate transport as an unexploited antifungal strategy. Nat Chem Biol 14, 135-141 (2018). 96. Li, S.-X. et al. Mitochondrial Complex V α Subunit Is Critical for Pathogenicity through Modulating Multiple Virulence Properties. Front Microbiol 8, 285 (2017). 97. Calderone, R., Li, D. & Traven, A. System-level impact of mitochondria on fungal virulence: to metabolism and beyond. FEMS Yeast Res 15, fov027 (2015). 98. Höfs, S., Mogavero, S. & Hube, B. Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. J Microbiol 54, 149-69 (2016). 99. Bambach, A. et al. Goa1p of Candida albicans localizes to the mitochondria during stress and is required for mitochondrial function and virulence. Eukaryot Cell 8, 1706-20 (2009). 100. She, X. et al. Fungal-specific subunits of the Candida albicans mitochondrial complex I drive diverse cell functions including cell wall synthesis. Cell Microbiol 17, 1350-64 (2015). 101. Gyurko, C., Lendenmann, U., Troxler, R.F. & Oppenheim, F.G. Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob Agents Chemother 44, 348-54 (2000). 102. Helmerhorst, E.J. et al. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274, 7286-91 (1999). 103. Helmerhorst, E.J., Troxler, R.F. & Oppenheim, F.G. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci U S A 98, 14637-42 (2001). 104. Petruzzelli, R. et al. Respiratory inhibition of isolated mammalian mitochondria by salivary antifungal peptide histatin-5. Biochem Biophys Res Commun 311, 1034-40 (2003).
|