帳號:guest(3.145.95.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):薛瀹熢
作者(外文):Xue, Yao-Peng.
論文名稱(中文):抗菌胜肽對人類致病性真菌Candida albicans之作用機制研究
論文名稱(外文):Studying the mechanism of antimicrobial peptides against human fungal pathogen Candida albicans
指導教授(中文):藍忠昱
指導教授(外文):Lan, Chung-Yu
口試委員(中文):高茂傑
張壯榮
口試委員(外文):Kao, Mou-Chieh
Chang, Chuang-Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:105080522
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:50
中文關鍵詞:白色念珠菌抗菌胜肽粒線體活性氧化物
外文關鍵詞:C.albicansAMPsmitochondriaROS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
人體中存在著不同菌種,在人體健康時雖然不構成危險,可是一旦人體免疫力下降,這些伺機性病原便有可能攻擊人體。白色念珠菌是人體共生菌叢中一種能夠感染人體且產生極高致死率的真菌,然而因為抗菌藥物的廣泛使用,白色念珠菌抗藥性如今已經成為全球性的議題。且因現行的抗真菌藥物種類有限,因此除了市面上已有的臨床藥物之外,開發及尋找新形態的藥物是目前非常重要的課題。且因真菌在生物特性上與人類有許多的相似性,使得開發抗真菌藥物面臨更大的挑戰。
抗菌胜肽作為生物先天性免疫系統重要的一環,除了具有殺菌效果外,亦可影響免疫系統的作用,因此被認為具有開發成新藥物之潛力。本研究主要在探討人類唾液衍生的抗菌胜肽對白色念珠菌的殺菌效果及機理。這些抗菌胜肽展現了顯著的抗菌效果,且除了一般懸浮細胞,亦能有效對抗形成生物膜的白色念珠菌及臨床上分離的Candida屬菌株。並且發現這些抗菌胜肽在白色念珠菌中攻擊其粒線體,導致細胞中的活性氧自由基上升,並與粒線體中產生細胞所需能量的電子傳遞鏈活性高度相關。尤其我們實驗更進一步發現其攻擊目標為粒線體電子傳遞鏈起始的mitochondrial complex I,藉由攻擊complex I上的NADH脫氫酶,抑制complex I活性及細胞氧氣消耗。不同於以往的研究,這是第一次發現對mitochondrial complex I具攻擊性的胜肽。結合上述綜合而論,本研究提出一個抗真菌藥物開發可能的新方向,並顯示抗菌胜肽擁有比目前所知更為複雜的機制與功能。
Candida albicans is a fungal commensal of humans and is able to cause life-threatening systemic infections particularly in the immunocompromised patients. The emergence of C. albicans drug resistance is also becoming more and more serious due to the limited classes of antifungals available and widespread clinical use of antifungals. Therefore, developing new antifungals is an urgent need.
Antimicrobial peptides (AMPs) are important components of host innate immunity these peptides possess a broad-spectrum against different pathogens including fungi. AMPs are thus considered as a highly exploitable agents for new therapeutic strategy. In this work, we studied the activity and mechanisms of human saliva-derived AMPs against C. albicans. These AMPs show a potent candidacidal activity against both planktonic and biofilm cells of C. albicans, and also clinical isolates of various Candida spp. Moreover, we identified the mitochondrial electron transport chain complex I, particularly NADH dehydrogenase of complex I, is the main target of the AMPs. Together, the unique properties of the AMPs tested suggest the potential use of AMPs in therapeutic applications and also highlight complex mechanisms and functions of AMPs.
INTRODUCTION 1
• 1. Candida albicans 2
• 2. Biofilm and its formation in C. albicans 2
• 3. Antimicrobial peptides (AMPs), Histatins, P-113 and P-113 derivatives 3
• 4. Mitochondria and complex I of the electron transport chain 3
• 5. ROS and mitochondrial complex I 5
MATERIALS & METHODS 6
• 1. Peptides and reagents. 7
• 2. Strains, medium and growth condition. 7
• 3. Isolation of mitochondria. 7
• 4. Mitochondrial complex I activity assay. 8
• 5. Identification of mutants resistant to P-113. 8
• 6. Biofilm metabolic activity assay. 8
• 7. Determination of minimum inhibiting concentration (MIC) of AMPs. 9
• 8. Antifungal susceptibility assay. 9
• 9. Scanning electron microscopy to examine biofilm morphology. 10
• 10. Fluorescence colocalization of AMPs. 10
• 11. Measurement of intracellular ROS accumulation. 11
• 12. Measurement of C. albicans respiration. 11
• 13. Determination of malondialdehyde (MDA) in C. albicans. 12
• 14. Measurement of ATP content in C. albicans. 12
• 15. Statistical analysis. 12
RESULTS 13
• 1. P-113Du and P-113Tri exhibit superior candidacidal activity compared to P-113 14
• 2. ROS involve in biofilm killing of AMPs 14
• 3. All tested AMPs target mitochondria 15
• 4. AMPs activity is associated with mitochondrial respiration 15
• 5. AMP resistance arising from mutants defective in mitochondrial complex I 16
• 6. AMPs inhibit cell respiration 17
• 7. Complex I and NADH dehydrogenase inhibited by the AMPs 17
• 8. The candidacidal activity of the AMPs closely correlates with ROS generation 19
DISCUSSION 20
REFERENCES 24
TABLE 33
• Table 1 | Mutant library gene orthologs for complex I P-113 resistant strains. 33
FIGURES 34
• Figure 1 | P-113 series AMPs effectly extirpate the planktonic and biofilm cells of C. albicans. 34
• Figure 2 | AMPs induce vacuolar-like protuberances formation on C. albicans biofilm. 35
• Figure 3 | ROS scavenger abolished activity of P-113 series AMPs against biofilm cells. 36
• Figure 4 | P-113 series AMPs target to mitochondria. 37
• Figure 5 | Respiration influences AMPs activity. 38
• Figure 6 | Subnit mutations on complex I consider P-113 resistance. 39
• Figure 7 | P-113 series AMPs effectively inhibit reaspiration and NADH dehydrogenases. 40
• Figure 8 | AMPs kill cells throgh induce ROS accumulation. 42
SUPPLEMENTARY TABLE 43
• Supplementary Table 1 | The MIC of P-113 series AMPs against clinical isolates 43
SUPPLEMENTARY RESULTS 44
• Supplementary Fig. 1 44
• Supplementary Fig. 2 45
• Supplementary Fig. 3 46
• Supplementary Fig. 4 47
• Supplementary Fig. 5 48
• Supplementary Fig. 6 49

1. Miller, L.G., Hajjeh, R.A. & Edwards, J.E. Estimating the cost of nosocomial candidemia in the united states. Clin Infect Dis 32, 1110 (2001).
2. Guinea, J. Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 20 Suppl 6, 5-10 (2014).
3. Pfaller, M.A. & Diekema, D.J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20, 133-63 (2007).
4. Neofytos, D. et al. Epidemiology, outcomes, and risk factors of invasive fungal infections in adult patients with acute myelogenous leukemia after induction chemotherapy. Diagn Microbiol Infect Dis 75, 144-9 (2013).
5. Boos, C., Kujath, P. & Bruch, H.P. [Intra-abdominal mycoses]. Mycoses 48 Suppl 1, 22-6 (2005).
6. Mishra, N.N. et al. Pathogenicity and drug resistance in Candida albicans and other yeast species. A review. Acta Microbiol Immunol Hung 54, 201-35 (2007).
7. Cowen, L.E., Anderson, J.B. & Kohn, L.M. Evolution of drug resistance in Candida albicans. Annu Rev Microbiol 56, 139-65 (2002).
8. Ford, C.B. et al. The evolution of drug resistance in clinical isolates of Candida albicans. Elife 4, e00662 (2015).
9. Ghannoum, M.A. & Rice, L.B. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 12, 501-17 (1999).
10. Roemer, T. & Krysan, D.J. Antifungal Drug Development: Challenges, Unmet Clinical Needs, and New Approaches. Cold Spring Harbor Perspectives in Medicine 4, a019703 (2014).
11. Lohse, M.B., Gulati, M., Johnson, A.D. & Nobile, C.J. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol 16, 19-31 (2018).
12. Costerton, J.W., Stewart, P.S. & Greenberg, E.P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318-1322 (1999).
13. Kostakioti, M., Hadjifrangiskou, M. & Hultgren, S.J. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine 3, a010306 (2013).
14. Conlon, B.P. et al. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503, 365 (2013).
15. Chandra, J. et al. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183, 5385-94 (2001).
16. Fox, E.P. & Nobile, C.J. A sticky situation: Untangling the transcriptional network controlling biofilm development in Candida albicans. Transcription 3, 315-322 (2012).
17. Ramage, G., Martínez, J.P. & López-Ribot, J.L. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res 6, 979-86 (2006).
18. Donlan, R.M. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33, 1387-92 (2001).
19. Lebeaux, D., Ghigo, J.-M. & Beloin, C. Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics. Microbiology and Molecular Biology Reviews : MMBR 78, 510-543 (2014).
20. Kumamoto, C.A. & Vinces, M.D. Alternative Candida albicans lifestyles: growth on surfaces. Annu. Rev. Microbiol. 59, 113-133 (2005).
21. Mayer, F.L., Wilson, D. & Hube, B. Candida albicans pathogenicity mechanisms. Virulence 4, 119-28 (2013).
22. Radek, K. & Gallo, R. Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol 29, 27-43 (2007).
23. Peters, B.M., Shirtliff, M.E. & Jabra-Rizk, M.A. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog 6, e1001067 (2010).
24. CAPRA, J.D., Janeway, C.A., Travers, P. & Walport, M. Inmunobiology: the inmune system in health and disease, (Garland Publishing, 1999).
25. Lai, Y. & Gallo, R.L. AMPed Up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends in immunology 30, 131-141 (2009).
26. Hancock, R.E.W. & Sahl, H.-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24, 1551-7 (2006).
27. Hancock, R.E. & Lehrer, R. Cationic peptides: a new source of antibiotics. Trends Biotechnol 16, 82-8 (1998).
28. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389-95 (2002).
29. Bahar, A.A. & Ren, D. Antimicrobial peptides. Pharmaceuticals (Basel) 6, 1543-75 (2013).
30. Wang, G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel) 7, 545-94 (2014).
31. Midura-Nowaczek, K. & Markowska, A. Antimicrobial peptides and their analogs: searching for new potential therapeutics. Perspect Medicin Chem 6, 73-80 (2014).
32. Oppenheim, F.G. et al. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J Biol Chem 263, 7472-7 (1988).
33. Campese, M., Sun, X., Bosch, J.A., Oppenheim, F.G. & Helmerhorst, E.J. Concentration and Fate of Histatins and Acidic Proline-rich Proteins in the Oral Environment. Archives of oral biology 54, 345-353 (2009).
34. Sabatini, L.M. & Azen, E.A. Histatins, a family of salivary histidine-rich proteins, are encoded by at least two loci (HIS1 and HIS2). Biochem Biophys Res Commun 160, 495-502 (1989).
35. Puri, S. & Edgerton, M. How does it kill?: understanding the candidacidal mechanism of salivary histatin 5. Eukaryot Cell 13, 958-64 (2014).
36. Xu, T., Levitz, S.M., Diamond, R.D. & Oppenheim, F.G. Anticandidal activity of major human salivary histatins. Infect Immun 59, 2549-54 (1991).
37. Helmerhorst, E.J. et al. Amphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob Agents Chemother 43, 702-4 (1999).
38. Rothstein, D.M. et al. Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob Agents Chemother 45, 1367-73 (2001).
39. Jang, W.S., Li, X.S., Sun, J.N. & Edgerton, M. The P-113 fragment of histatin 5 requires a specific peptide sequence for intracellular translocation in Candida albicans, which is independent of cell wall binding. Antimicrob Agents Chemother 52, 497-504 (2008).
40. Lin, G.-Y. et al. The Antimicrobial Peptides P-113Du and P-113Tri Function against Candida albicans. Antimicrob Agents Chemother 60, 6369-73 (2016).
41. Barrientos, A. In vivo and in organello assessment of OXPHOS activities. Methods 26, 307-16 (2002).
42. Weinberg, S.E. & Chandel, N.S. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11, 9-15 (2015).
43. Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem J 417, 1-13 (2009).
44. Chen, Y.-R. & Zweier, J.L. Cardiac mitochondria and reactive oxygen species generation. Circ Res 114, 524-37 (2014).
45. Hirst, J. Mitochondrial complex I. Annu Rev Biochem 82, 551-75 (2013).
46. Brandt, U. Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75, 69-92 (2006).
47. Dudkina, N.V., Eubel, H., Keegstra, W., Boekema, E.J. & Braun, H.-P. Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci U S A 102, 3225-9 (2005).
48. Valsecchi, F. et al. Complex I disorders: causes, mechanisms, and development of treatment strategies at the cellular level. Dev Disabil Res Rev 16, 175-82 (2010).
49. Degli Esposti, M. Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta 1364, 222-35 (1998).
50. Okun, J.G., Lummen, P. & Brandt, U. Three classes of inhibitors share a common binding domain in mitochondrial complex I (NADH:ubiquinone oxidoreductase). J Biol Chem 274, 2625-30 (1999).
51. Horgan, D.J., Singer, T.P. & Casida, J.E. Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. 13. Binding sites of rotenone, piericidin A, and amytal in the respiratory chain. J Biol Chem 243, 834-43 (1968).
52. Li, D. et al. Enzymatic dysfunction of mitochondrial complex I of the Candida albicans goa1 mutant is associated with increased reactive oxidants and cell death. Eukaryot Cell 10, 672-82 (2011).
53. Li, D., She, X. & Calderone, R. Functional diversity of complex I subunits in Candida albicans mitochondria. Curr Genet 62, 87-95 (2016).
54. Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55, 373-99 (2004).
55. Sazanov, L.A. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46, 2275-88 (2007).
56. Kussmaul, L. & Hirst, J. The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci U S A 103, 7607-12 (2006).
57. Hirst, J., King, M.S. & Pryde, K.R. The production of reactive oxygen species by complex I. (Portland Press Limited, 2008).
58. Nimse, S.B. & Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances 5, 27986-28006 (2015).
59. Ray, P.D., Huang, B.-W. & Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24, 981-90 (2012).
60. Sies, H. Oxidative stress: oxidants and antioxidants. Exp Physiol 82, 291-5 (1997).
61. Shahidi, F. & Zhong, Y. Novel antioxidants in food quality preservation and health promotion. European Journal of Lipid Science and Technology 112, 930-940 (2010).
62. Bendich, A., Machlin, L., Scandurra, O., Burton, G. & Wayner, D. The antioxidant role of vitamin C. Advances in Free Radical Biology & Medicine 2, 419-444 (1986).
63. Gillum, A.M., Tsay, E.Y. & Kirsch, D.R. Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198, 179-82 (1984).
64. Luttik, M.A. et al. The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem 273, 24529-34 (1998).
65. Noble, S.M., French, S., Kohn, L.A., Chen, V. & Johnson, A.D. Systematic screens of a Candida albicans homozygous deletion library decouple morphogenetic switching and pathogenicity. Nat Genet 42, 590-8 (2010).
66. Chen, H.-F. & Lan, C.-Y. Role of SFP1 in the Regulation of Candida albicans Biofilm Formation. PLoS One 10, e0129903 (2015).
67. Yu, H.Y. et al. Easy strategy to increase salt resistance of antimicrobial peptides. Antimicrob Agents Chemother 55, 4918-21 (2011).
68. John H. Rex, M.A.G. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Third Edition. (2008 ).
69. Wang, X. & Moraes, C.T. Increases in mitochondrial biogenesis impair carcinogenesis at multiple levels. Mol Oncol 5, 399-409 (2011).
70. Welling, M.M., Brouwer, C.P.J.M., van 't Hof, W., Veerman, E.C.I. & Amerongen, A.V.N. Histatin-derived monomeric and dimeric synthetic peptides show strong bactericidal activity towards multidrug-resistant Staphylococcus aureus in vivo. Antimicrob Agents Chemother 51, 3416-9 (2007).
71. Gao, H.-W. et al. Glucose buffer is suitable for blood group conversion with α-N acetylgalactosaminidase and α-galactosidase. Blood Transfusion 12, 61 (2014).
72. Thibane, V.S., Kock, J.L., Ells, R., van Wyk, P.W. & Pohl, C.H. Effect of marine polyunsaturated fatty acids on biofilm formation of Candida albicans and Candida dubliniensis. Mar Drugs 8, 2597-604 (2010).
73. De Nollin, S. & Borgers, M. Scanning electron microscopy of Candida albicans after in vitro treatment with miconazole. Antimicrobial agents and chemotherapy 7, 704-711 (1975).
74. Oh, Y. & Bi, E. Septin structure and function in yeast and beyond. Trends Cell Biol 21, 141-8 (2011).
75. Calahorra, M., Sánchez, N.S. & Peña, A. Characterization of glycolytic metabolism and ion transport of Candida albicans. Yeast 29, 357-70 (2012).
76. She, X. et al. A mitochondrial proteomics view of complex I deficiency in Candida albicans. Mitochondrion 38, 48-57 (2018).
77. Sun, N. et al. Azole susceptibility and transcriptome profiling in Candida albicans mitochondrial electron transport chain complex I mutants. Antimicrob Agents Chemother 57, 532-42 (2013).
78. Nicaud, J.-M. Yarrowia lipolytica. Yeast 29, 409-18 (2012).
79. Fassone, E. & Rahman, S. Complex I deficiency: clinical features, biochemistry and molecular genetics. J Med Genet 49, 578-90 (2012).
80. Veiga, A., Arrabaça, J.D. & Loureiro-Dias, M.C. Cyanide-resistant respiration, a very frequent metabolic pathway in yeasts. FEMS Yeast Res 3, 239-45 (2003).
81. de Vries, S. & Grivell, L.A. Purification and characterization of a rotenone-insensitive NADH:Q6 oxidoreductase from mitochondria of Saccharomyces cerevisiae. Eur J Biochem 176, 377-84 (1988).
82. Helmerhorst, E.J., Murphy, M.P., Troxler, R.F. & Oppenheim, F.G. Characterization of the mitochondrial respiratory pathways in Candida albicans. Biochim Biophys Acta 1556, 73-80 (2002).
83. Kang, P.T., Yun, J., Kaumaya, P.P.T. & Chen, Y.-R. Design and use of peptide-based antibodies decreasing superoxide production by mitochondrial complex I and complex II. Biopolymers 96, 207-21 (2011).
84. Birrell, J.A., Yakovlev, G. & Hirst, J. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen. Biochemistry 48, 12005-13 (2009).
85. Marnett, L.J. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 424, 83-95 (1999).
86. Davila, M.P., Muñoz, P.M., Tapia, J.A., Ferrusola, C.O. & Peña, F.J. Inhibition of mitochondrial complex I leads to decreased motility and membrane integrity related to increased hydrogen peroxide and reduced ATP production, while the inhibition of glycolysis has less impact on sperm motility. PloS one 10, e0138777 (2015).
87. Bondaryk, M., Staniszewska, M., Zielińska, P. & Urbańczyk-Lipkowska, Z. Natural Antimicrobial Peptides as Inspiration for Design of a New Generation Antifungal Compounds. Journal of Fungi 3, 46 (2017).
88. Vandeputte, P., Ferrari, S. & Coste, A.T. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012, 713687 (2012).
89. Zharova, T.V. & Vinogradov, A.D. A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) by ADP-ribose. Biochim Biophys Acta 1320, 256-64 (1997).
90. Kean, E.A., Gutman, M. & Singer, T.P. Studies on the respiratory chain-linked nicotinamide adenine dinucleotide dehydrogenase. XXII. Rhein, a competitive inhibitor of the dehydrogenase. J Biol Chem 246, 2346-53 (1971).
91. Kotlyar, A.B., Karliner, J.S. & Cecchini, G. A novel strong competitive inhibitor of complex I. FEBS Lett 579, 4861-6 (2005).
92. Brown, A.J.P., Brown, G.D., Netea, M.G. & Gow, N.A.R. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol 22, 614-22 (2014).
93. Li, D. & Calderone, R. Exploiting mitochondria as targets for the development of new antifungals. Virulence 8, 159-168 (2017).
94. Shingu-Vazquez, M. & Traven, A. Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot Cell 10, 1376-83 (2011).
95. McLellan, C.A. et al. Inhibiting mitochondrial phosphate transport as an unexploited antifungal strategy. Nat Chem Biol 14, 135-141 (2018).
96. Li, S.-X. et al. Mitochondrial Complex V α Subunit Is Critical for Pathogenicity through Modulating Multiple Virulence Properties. Front Microbiol 8, 285 (2017).
97. Calderone, R., Li, D. & Traven, A. System-level impact of mitochondria on fungal virulence: to metabolism and beyond. FEMS Yeast Res 15, fov027 (2015).
98. Höfs, S., Mogavero, S. & Hube, B. Interaction of Candida albicans with host cells: virulence factors, host defense, escape strategies, and the microbiota. J Microbiol 54, 149-69 (2016).
99. Bambach, A. et al. Goa1p of Candida albicans localizes to the mitochondria during stress and is required for mitochondrial function and virulence. Eukaryot Cell 8, 1706-20 (2009).
100. She, X. et al. Fungal-specific subunits of the Candida albicans mitochondrial complex I drive diverse cell functions including cell wall synthesis. Cell Microbiol 17, 1350-64 (2015).
101. Gyurko, C., Lendenmann, U., Troxler, R.F. & Oppenheim, F.G. Candida albicans mutants deficient in respiration are resistant to the small cationic salivary antimicrobial peptide histatin 5. Antimicrob Agents Chemother 44, 348-54 (2000).
102. Helmerhorst, E.J. et al. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion. J Biol Chem 274, 7286-91 (1999).
103. Helmerhorst, E.J., Troxler, R.F. & Oppenheim, F.G. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc Natl Acad Sci U S A 98, 14637-42 (2001).
104. Petruzzelli, R. et al. Respiratory inhibition of isolated mammalian mitochondria by salivary antifungal peptide histatin-5. Biochem Biophys Res Commun 311, 1034-40 (2003).

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *