|
1. Marshall, B.J. and J.R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984. 1(8390): p. 1311-5. 2. Marshall, B.J., et al., Attempt to fulfil Koch's postulates for pyloric Campylobacter. Med J Aust, 1985. 142(8): p. 436-9. 3. Olson, J.W. and R.J. Maier, Molecular hydrogen as an energy source for Helicobacter pylori. Science, 2002. 298(5599): p. 1788-90. 4. Warren, J.R. and B. Marshall, Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet, 1983. 1(8336): p. 1273-5. 5. Peterson, W.L., Helicobacter pylori and peptic ulcer disease. N Engl J Med, 1991. 324(15): p. 1043-8. 6. Hejazi, R. and M. Amiji, Stomach-specific anti-H. pylori therapy. I: Preparation and characterization of tetracyline-loaded chitosan microspheres. Int J Pharm, 2002. 235(1-2): p. 87-94. 7. Taneike, I., et al., Helicobacter pylori Intrafamilial Infections: Change in Source of Infection of a Child from Father to Mother after Eradication Therapy. Clin Diagn Lab Immunol, 2001. 8(4): p. 731-9. 8. van der Hulst, R.W., et al., Treatment of Helicobacter pylori infection: a review of the world literature. Helicobacter, 1996. 1(1): p. 6-19. 9. Chey, W.D., et al., ACG Clinical Guideline: Treatment of Helicobacter pylori Infection. Am J Gastroenterol, 2017. 112(2): p. 212-239. 10. Tomb, J.F., et al., The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 1997. 388(6642): p. 539-47. 11. Alm, R.A., et al., Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 1999. 397(6715): p. 176-80. 12. Oh, J.D., et al., The complete genome sequence of a chronic atrophic gastritis Helicobacter pylori strain: evolution during disease progression. Proc Natl Acad Sci U S A, 2006. 103(26): p. 9999-10004. 13. Baltrus, D.A., et al., The complete genome sequence of Helicobacter pylori strain G27. J Bacteriol, 2009. 191(1): p. 447-8. 14. Atherton, J.C., et al., Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology, 1997. 112(1): p. 92-9. 15. Blaser, M.J., Not all Helicobacter pylori strains are created equal: should all be eliminated? Lancet, 1997. 349(9057): p. 1020-2. 16. Kalali, B., et al., H. pylori Virulence Factors: Influence on Immune System and Pathology. Mediators of Inflammation, 2014. 2014: p. 9. 17. Hazell, S.L., et al., Campylobacter pyloridis and gastritis: association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. J Infect Dis, 1986. 153(4): p. 658-63. 18. Roesler, B.M., E.M.A. Rabelo-Gonçalves, and J.M.R. Zeitune, Virulence Factors of Helicobacter pylori: A Review. Clin Med Insights Gastroenterol, 2014. 7: p. 9-17. 19. Schreiber, S., et al., The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci U S A, 2004. 101(14): p. 5024-9. 20. Clyne, M., A. Labigne, and B. Drumm, Helicobacter pylori requires an acidic environment to survive in the presence of urea. Infect Immun, 1995. 63(5): p. 1669-73. 21. Scott, D.R., et al., The role of internal urease in acid resistance of Helicobacter pylori. Gastroenterology, 1998. 114(1): p. 58-70. 22. Bauerfeind, P., et al., Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut, 1997. 40(1): p. 25-30. 23. Dunne, C., B. Dolan, and M. Clyne, Factors that mediate colonization of the human stomach by Helicobacter pylori. World J Gastroenterol, 2014. 20(19): p. 5610-24. 24. Censini, S., et al., cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A, 1996. 93(25): p. 14648-53. 25. Argent, R.H., et al., Functional association between the Helicobacter pylori virulence factors VacA and CagA. J Med Microbiol, 2008. 57(Pt 2): p. 145-50. 26. J., P., et al., Helicobacter pylori lipopolysaccharide induces gastric epithelial cells apoptosis. IUBMB Life, 1996. 40(3): p. 597-602. 27. Cover, T.L. and S.R. Blanke, Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol, 2005. 3(4): p. 320-32. 28. Sharma, S.A., et al., Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J Immunol, 1998. 160(5): p. 2401-7. 29. Gnauck, A., R.G. Lentle, and M.C. Kruger, The Characteristics and Function of Bacterial Lipopolysaccharides and Their Endotoxic Potential in Humans. Int Rev Immunol, 2016. 35(3): p. 189-218. 30. Ulich, T.R., et al., The intratracheal administration of endotoxin and cytokines. I. Characterization of LPS-induced IL-1 and TNF mRNA expression and the LPS-, IL-1-, and TNF-induced inflammatory infiltrate. Am J Pathol, 1991. 138(6): p. 1485-96. 31. Kulp, A. and M.J. Kuehn, Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol, 2010. 64: p. 163-84. 32. Ranoa, D.R.E., S.L. Kelley, and R.I. Tapping, Human Lipopolysaccharide-binding Protein (LBP) and CD14 Independently Deliver Triacylated Lipoproteins to Toll-like Receptor 1 (TLR1) and TLR2 and Enhance Formation of the Ternary Signaling Complex. J Biol Chem, 2013. 288(14): p. 9729-41. 33. Wang, X. and P.J. Quinn, Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog Lipid Res, 2010. 49(2): p. 97-107. 34. Hug, I., et al., Helicobacter pylori lipopolysaccharide is synthesized via a novel pathway with an evolutionary connection to protein N-glycosylation. PLoS Pathog, 2010. 6(3): p. e1000819. 35. Rittig, M.G., et al., Smooth and rough lipopolysaccharide phenotypes of Brucella induce different intracellular trafficking and cytokine/chemokine release in human monocytes. J Leukoc Biol, 2003. 74(6): p. 1045-55. 36. Raetz, C.R.H. and C. Whitfield, Lipopolysaccharide Endotoxins. Annu Rev Biochem, 2002. 71: p. 635-700. 37. Edwards, N.J., et al., Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium. Mol Microbiol, 2000. 35(6): p. 1530-9. 38. Moran, A.P., et al., Chemical characterization of Campylobacter jejuni lipopolysaccharides containing N-acetylneuraminic acid and 2,3-diamino-2,3-dideoxy-D-glucose. J Bacteriol, 1991. 173(2): p. 618-26. 39. Hashimoto, M., et al., Structural study on lipid A and the O-specific polysaccharide of the lipopolysaccharide from a clinical isolate of Bacteroides vulgatus from a patient with Crohn's disease. Eur J Biochem, 2002. 269(15): p. 3715-21. 40. Moran, A.P., B. Lindner, and E.J. Walsh, Structural characterization of the lipid A component of Helicobacter pylori rough- and smooth-form lipopolysaccharides. J Bacteriol, 1997. 179(20): p. 6453-63. 41. Pacheco, A.R., et al., Fucose Sensing Regulates Bacterial Intestinal Colonization. Nature, 2012. 492(7427): p. 113-7. 42. Ren, Y., et al., Biochemical characterization of GDP-L-fucose de novo synthesis pathway in fungus Mortierella alpina. Biochem Biophys Res Commun, 2010. 391(4): p. 1663-9. 43. Webb, N.A., et al., Crystal structure of a tetrameric GDP-d-mannose 4,6-dehydratase from a bacterial GDP-d-rhamnose biosynthetic pathway. Protein Sci, 2004. 13(2): p. 529-39. 44. Kneidinger, B., et al., Identification of two GDP-6-deoxy-D-lyxo-4-hexulose reductases synthesizing GDP-D-rhamnose in Aneurinibacillus thermoaerophilus L420-91T. J Biol Chem, 2001. 276(8): p. 5577-83. 45. Ye, R.W., N.A. Zielinski, and A.M. Chakrabarty, Purification and characterization of phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa involved in biosynthesis of both alginate and lipopolysaccharide. J Bacteriol, 1994. 176(16): p. 4851-7. 46. Deatherage, B.L., et al., Biogenesis of bacterial membrane vesicles. Mol Microbiol, 2009. 72(6): p. 1395-407. 47. Mashburn, L.M. and M. Whiteley, Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature, 2005. 437(7057): p. 422-5. 48. Rakoff-Nahoum, S., M.J. Coyne, and L.E. Comstock, An ecological network of polysaccharide utilization among human intestinal symbionts. Curr Biol, 2014. 24(1): p. 40-49. 49. Renelli, M., et al., DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology, 2004. 150(Pt 7): p. 2161-9. 50. Vanaja, S.K., et al., Bacterial Outer Membrane Vesicles Mediate Cytosolic Localization of LPS and Caspase-11 Activation. Cell, 2016. 165(5): p. 1106-1119. 51. Altman, E., et al., Effect of the HP0159 ORF mutation on the lipopolysaccharide structure and colonizing ability of Helicobacter pylori. FEMS Immunol Med Microbiol, 2008. 53(2): p. 204-13. 52. Altman, E., et al., Lipopolysaccharide structures of Helicobacter pylori wild-type strain 26695 and 26695 HP0826::Kan mutant devoid of the O-chain polysaccharide component. Carbohydr Res, 2011. 346(15): p. 2437-44. 53. Li, H., et al., The redefinition of Helicobacter pylori lipopolysaccharide O-antigen and core-oligosaccharide domains. PLoS Pathog, 2017. 13(3): p. e1006280. 54. Horton, R.M., In vitro recombination and mutagenesis of DNA. SOEing together tailor-made genes. Methods Mol Biol, 1997. 67: p. 141-9. 55. Lefebvre, B., P. Formstecher, and P. Lefebvre, Improvement of the gene splicing overlap (SOE) method. Biotechniques, 1995. 19(2): p. 186-8. 56. Horton, R.M., et al., Gene splicing by overlap extension. Methods Enzymol, 1993. 217: p. 270-9. 57. Haas, R., T.F. Meyer, and J.P. van Putten, Aflagellated mutants of Helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis. Mol Microbiol, 1993. 8(4): p. 753-60. 58. Gerrits, M.M., et al., Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of Helicobacter pylori. J Med Microbiol, 2004. 53(Pt 11): p. 1123-8. 59. Wai, S.N., A. Takade, and K. Amako, The release of outer membrane vesicles from the strains of enterotoxigenic Escherichia coli. Microbiol Immunol, 1995. 39(7): p. 451-6. 60. Fomsgaard, A., M.A. Freudenberg, and C. Galanos, Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J Clin Microbiol, 1990. 28(12): p. 2627-31. 61. Marolda, C.L., et al., Micromethods for the characterization of lipid A-core and O-antigen lipopolysaccharide. Methods Mol Biol, 2006. 347: p. 237-52. 62. Tsai, C.M. and C.E. Frasch, A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem, 1982. 119(1): p. 115-9. 63. Wang, Y. and D.E. Taylor, Chloramphenicol resistance in Campylobacter coli: nucleotide sequence, expression, and cloning vector construction. Gene, 1990. 94(1): p. 23-8. 64. Moese, S., et al., Helicobacter pylori Induces AGS Cell Motility and Elongation via Independent Signaling Pathways. Infect Immun, 2004. 72(6): p. 3646-9. 65. Abu-Lail, N.I. and T.A. Camesano, Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109. Environ Sci Technol, 2003. 37(10): p. 2173-83. 66. Kitchens, R.L. and R.S. Munford, CD14-dependent internalization of bacterial lipopolysaccharide (LPS) is strongly influenced by LPS aggregation but not by cellular responses to LPS. J Immunol, 1998. 160(4): p. 1920-8. 67. Wright, S.D., et al., CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 1990. 249(4975): p. 1431-3. 68. Wang, Z., et al., Influence of Core Oligosaccharide of Lipopolysaccharide to Outer Membrane Behavior of Escherichia coli. Mar Drugs, 2015. 13(6): p. 3325-39. 69. Sturla, L., et al., Expression, purification and characterization of GDP-d-mannose 4,6-dehydratase from Escherichia coli. FEBS Letters, 1997. 412(1): p. 126-130. 70. Somoza, J.R., et al., Structural and kinetic analysis of Escherichia coli GDP-mannose 4,6 dehydratase provides insights into the enzyme's catalytic mechanism and regulation by GDP-fucose. Structure, 2000. 8(2): p. 123-35. 71. Koplin, R., et al., Genetics of xanthan production in Xanthomonas campestris: the xanA and xanB genes are involved in UDP-glucose and GDP-mannose biosynthesis. J Bacteriol, 1992. 174(1): p. 191-9. 72. Appelmelk, B.J., et al., Potential role of molecular mimicry between Helicobacter pylori lipopolysaccharide and host Lewis blood group antigens in autoimmunity. Infect Immun, 1996. 64(6): p. 2031-40. 73. Chang, P.C., et al., Effects of a HP0859 (rfaD) knockout mutation on lipopolysaccharide structure of Helicobacter pylori 26695 and the bacterial adhesion on AGS cells. Biochem Biophys Res Commun, 2011. 405(3): p. 497-502.
|