帳號:guest(3.141.192.246)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐可瑜
作者(外文):Choi, Ho-U
論文名稱(中文):好發性突變RhoA在瀰漫型胃癌中的分子機制
論文名稱(外文):Mechanistic basis of recurrent RhoA mutation in diffuse-type gastric cancer
指導教授(中文):王雯靜
指導教授(外文):Wang, Wen-Ching
口試委員(中文):王慧菁
陳韻晶
賴志河
陳瑞華
口試委員(外文):Wang, Hui-Ching
Chen, Yun-Ching
Lai, Chih-Ho
Chen, Ruey-Hwa
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:105080516
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:62
中文關鍵詞:瀰漫型胃癌RhoA酵素突變
外文關鍵詞:diffuse-type gastric cancerRhoAmutation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:169
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
胃癌是世界上最常見的惡性腫瘤之一,根據 Lauren分類,胃癌分為腸道型intestinal-type gastric cancers (IGC) 及瀰漫型diffuses-type gastric cancers (DGC)兩大類。 新興的胃癌全基因檢測根據基因特徵的差異把胃癌定義為四大類:艾伯斯坦-巴爾病毒型(Epstein–Barr virus)、微衛星不穩定型(microsatellite instability)、染色體不穩定型(chromosomal instability)及基因穩定型(genomically stable)。其中,瀰漫型胃癌大部分屬於基因穩定型,而當中約10%在RhoA基因上帶有點突變。RhoA是一個潛在性致癌基因,負責調控細胞生長及移動。但是,這個特別在瀰漫型胃癌發生突變的RhoA基因在胃癌進程中扮演的角色仍然十分不清楚。在這個研究中,我們著重在分析從臺灣林口長庚醫院的99個胃癌檢體中RhoA基因的點突變,而且其中兩個瀰漫型胃癌的病人在RhoA基因上都帶有Y42C點突變。我們發現在瀰漫型胃癌細胞株HGC-27、MKN45及SNU601中剔除RhoA基因的表現能抑制腫瘤細胞生長。此外,在瀰漫型胃癌細胞株AGS中剔除RhoA基因的表現更會抑制腫瘤細胞的遷移。相反,在AGS細胞中大量表現外來的RhoAY42C突變基因比起RhoAwt野生型基因更促進腫瘤細胞生長及移動。相較於ROCK激酶,剔除mDia1/2基因的表現才能抑制RhoAY42C突變基因引起的細胞生長及移動。整體而言,我們的研究結果提出RhoAY42C突變基因對於胃癌細胞生長及轉移扮演重要的角色。
Gastric cancer (GC) is one of the most common malignancies in the world. According to Lauren’s classification, gastric cancer divided into intestinal-type (IGC) and diffuses-type gastric cancers (DGC). Emerging genome-wide characterization of GCs reveals four subtypes of mutational signatures (Epstein–Barr virus-associated, microsatellite instability, chromosomal instability, and genomically stable signatures). Of those, DGC belongs to genomically stable signatures and ~10% of DGC cases carry mutation of RhoA, a potential driver gene that regulates the cell proliferation and/or cell migration in cancer cells. However, the underlying mechanisms of a specific RhoA mutation that contributes to gastric carcinogenesis remain largely unknown. In this study, we focus on characterization of SNPs of RhoA from DGC (n = 99) collected at CGMH. Of those, two were identified had the Y42C mutation. Knock down of RhoA in MKN45 significantly reduced the survival rate. Furthermore, knock down of RhoA in AGS cells had a significantly reduced level of migratory activity. Conversely, overexpression of exogenous RhoAY42C in AGS significantly increased the cell mobility compared with RhoAwt. Knock down the RhoA effector mDia1/2 perturbed the increased cell mobility mediated by RhoAY42C. Our results collectively point out a critical role of RhoAY42C in gastric cancer invasiveness.
Chapter 1 Introduction ........................................8
1.1 Gastric cancer .........................................8
1.2 Classification of gastric cancer .....................8
1.3 Recurrent mutation in diffuse-type gastric cancer–RhoA..8
1.4 Small Rho GTPase family RhoA ...........................9
1.5 Downstream effectors of RhoA ...........................10
Chapter 2 Materials and Methods ...............................12
2.1 Patients and tumor characteristics .....................12
2.2 Cell culture and antibodies ............................12
2.3 Genomic DNA extraction .................................12
2.4 Polymerase Chain Reaction, DNA purification of PCR product
and Sequencing ...............................................13
2.5 Real-time quantitative reverse transcription PCR .......13
2.6 Lentiviral shRNA knockdown and vector transfection .....14
2.7 MTT assay .............................................14
2.8 Wound healing assay/Scratch assay ......................15
2.9 Transwell migration and invasion assay .................15
2.10 Time-lapse cell imaging ...............................15
2.11 Soft-agar assay .......................................16
2.12 Western-blotting .....................................16
2.13 Statistics methods ....................................16
Chapter 3 Results .............................................18
3.1 Clinical relevance of RhoA ................................18
3.2 The presence of the RhoAY42C mutation in diffuse-type gastric
cancer in Taiwan ..............................................18
3.3 Knockdown of RhoA reduced proliferation and migratory
activity ......................................................19
3.4 RhoAY42C upregulated the migratory activity ...............20
3.5 RhoAY42C enhanced ability of anchorage-independent growth..21
3.6 RhoAY42C exhibited a significant portion of a blebbing
morphology ....................................................21
3.7 Depletion of mDia1/2 in AGS-mock/RhoAwt/ RhoAY42C cells
reduced proliferation, migration and invasion .................21
3.8 Down-regulation of mDia1/2 impaired ability of anchorage-
independent growth ............................................22
3.9 Down-regulation of ROCK1 impaired RhoAY42C -mediated membrane
blebbing ......................................................22
Chapter 4 Discussion ..........................................23
Chapter 5 Figures .............................................26
Chapter 6 Tables ..............................................48
Chapter 7 Reference ...........................................54
1. McLean, M. H., and El-Omar, E. M. (2014) Genetics of gastric cancer. Nature reviews. Gastroenterology & hepatology 11, 664-674
2. GLOBOCAN. (2012) Cancer Incidence and Mortality Worldwide. Word Cancer Research Fund International
3. Dicken, B. J., Bigam, D. L., Cass, C., Mackey, J. R., Joy, A. A., and Hamilton, S. M. (2005) Gastric Adenocarcinoma. Annals of Surgery 241, 27-39
4. Ministry of Health and Welfare (2016) 2016 statistics of causes of death. Department of Health of Republic of China
5. Lauren P. (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64, 31-49
6. Stemmermann, G. N., and Brown, C. (1974) A survival study of intestinal and diffuse types of gastric carcinoma. Cancer 33, 1190-1195
7. Kakiuchi, M., Nishizawa, T., Ueda, H., Gotoh, K., Tanaka, A., Hayashi, A., Yamamoto, S., Tatsuno, K., Katoh, H., Watanabe, Y., Ichimura, T., Ushiku, T., Funahashi, S., Tateishi, K., Wada, I., Shimizu, N., Nomura, S., Koike, K., Seto, Y., Fukayama, M., Aburatani, H., and Ishikawa, S. (2014) Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nature genetics 46, 583-587
8. Hommel, C., Knoedler, M., Bojarski, C., Schumann, M., Epple, H. J., Zeitz, M., and Daum, S. (2012) Diffuse gastric cancer with peritoneal carcinomatosis can mimic Crohn's disease. Case Rep Gastroenterol 6, 695-703
9. Correa, P. (1988) A human model of gastric carcinogenesis. Cancer Res 48, 3554-3560
10. Network, C. G. A. R. (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202-209
11. Cho, S. Y., Park, J. W., Liu, Y., Park, Y. S., Kim, J. H., Yang, H., Um, H., Ko, W. R., Lee, B. I., Kwon, S. Y., Ryu, S. W., Kwon, C. H., Park, D. Y., Lee, J.-H., Lee, S. I., Song, K. S., Hur, H., Han, S.-U., Chang, e., Kim, S.-J., Kim, B.-S., Yook, J.-H., Yoo, M.-W., Kim, B.-S., Lee, I.-S., Kook, M.-C., Thiessen, N., He, A., Stewart, C., Dunford, A., Kim, J., Shih, J., Saksena, G., Cherniack, A. D., Schumacher, S., Weiner, A.-T., Rosenberg, M., Getz, G., Yang, E. G., Ryu, M. H., Bass, A. J., Kyun, H., and Kim, J. H. (2017) Sporadic Early-onset Diffuse Gastric Cancers Have High Frequency of Somatic CDH1 Alterations but Low Frequency of Somatic RHOA Mutations Compared with Late-onset Cancers. Gastroenterology
12. Wang, K., Yuen, S. T., Xu, J., Lee, S. P., Yan, H. H., Shi, S. T., Siu, H. C., Deng, S., Chu, K. M., Law, S., Chan, K. H., Chan, A. S., Tsui, W. Y., Ho, S. L., Chan, A. K., Man, J. L., Foglizzo, V., Ng, M. K., Chan, A. S., Ching, Y. P., Cheng, G. H., Xie, T., Fernandez, J., Li, V. S., Clevers, H., Rejto, P. A., Mao, M., and Leung, S. Y. (2014) Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nature genetics 46, 573-582
13. Hodge, R. G., and Ridley, A. J. (2016) Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17, 496-510
14. Zhang, B., and Zheng, Y. (1998) Regulation of RhoA GTP hydrolysis by the GTPase-activating proteins p190, p50RhoGAP, Bcr, and 3BP-1. Biochemistry 37, 5249-5257
15. Pertz, O. (2010) Spatio-temporal Rho GTPase signaling - where are we now? Journal of cell science 123, 1841-1850
16. Gilkes, D. M., Xiang, L., Lee, S. J., Chaturvedi, P., Hubbi, M. E., Wirtz, D., and Semenza, G. L. (2014) Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc Natl Acad Sci U S A 111, E384-393
17. Korourian, A., Roudi, R., Shariftabrizi, A., Kalantari, E., Sotoodeh, K., and Madjd, Z. (2016) Differential role of Wnt signaling and base excision repair pathways in gastric adenocarcinoma aggressiveness. Clin Exp Med
18. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T., and Narumiya, S. (1999) Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1, 136-143
19. Fujisawa, K., Madaule, P., Ishizaki, T., Watanabe, G., Bito, H., Saito, Y., Hall, A., and Narumiya, S. (1998) Different Regions of Rho Determine Rho-selective Binding of Different Classes of Rho Target Molecules. Journal of Biological Chemistry 273, 18943-18949
20. Narumiya, S., Tanji, M., and Ishizaki, T. (2009) Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev 28, 65-76
21. Chin, V. T., Nagrial, A. M., Chou, A., Biankin, A. V., Gill, A. J., Timpson, P., and Pajic, M. (2015) Rho-associated kinase signalling and the cancer microenvironment: novel biological implications and therapeutic opportunities. Expert Rev Mol Med 17, e17
22. Iden, S., and Collard, J. G. (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9, 846-859
23. O'Connor, K., and Chen, M. (2013) Dynamic functions of RhoA in tumor cell migration and invasion. Small GTPases 4, 141-147
24. Watanabe, N., Madaule, P., Reid, T., Ishizaki, T., Watanabe, G., Kakizuka, A., Saito, Y., Nakao, K., Jockusch, B. M., and Narumiya, S. (1997) p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. The EMBO journal 16, 3044-3056
25. Gopinath, S. D., Narumiya, S., and Dhawan, J. (2007) The RhoA effector mDiaphanous regulates MyoD expression and cell cycle progression via SRF-dependent and SRF-independent pathways. Journal of cell science 120, 3086-3098
26. Yamana, N., Arakawa, Y., Nishino, T., Kurokawa, K., Tanji, M., Itoh, R. E., Monypenny, J., Ishizaki, T., Bito, H., Nozaki, K., Hashimoto, N., Matsuda, M., and Narumiya, S. (2006) The Rho-mDia1 pathway regulates cell polarity and focal adhesion turnover in migrating cells through mobilizing Apc and c-Src. Mol Cell Biol 26, 6844-6858
27. Zang, Z. J., Cutcutache, I., Poon, S. L., Zhang, S. L., McPherson, J. R., Tao, J., Rajasegaran, V., Heng, H. L., Deng, N., Gan, A., Lim, K. H., Ong, C. K., Huang, D., Chin, S. Y., Tan, I. B., Ng, C. C., Yu, W., Wu, Y., Lee, M., Wu, J., Poh, D., Wan, W. K., Rha, S. Y., So, J., Salto-Tellez, M., Yeoh, K. G., Wong, W. K., Zhu, Y. J., Futreal, P. A., Pang, B., Ruan, Y., Hillmer, A. M., Bertrand, D., Nagarajan, N., Rozen, S., Teh, B. T., and Tan, P. (2012) Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nature genetics 44, 570-574
28. Chang, H. R., Nam, S., Lee, J., Kim, J. H., Jung, H. R., Park, H. S., Park, S., Ahn, Y. Z., Huh, I., Balch, C., Ku, J. L., Powis, G., Park, T., Jeong, J. H., and Kim, Y. H. (2016) Systematic approach identifies RHOA as a potential biomarker therapeutic target for Asian gastric cancer. Oncotarget 7, 81435-81451
29. Rocken, C., Behrens, H. M., Boger, C., and Kruger, S. (2016) Clinicopathological characteristics of RHOA mutations in a Central European gastric cancer cohort. J Clin Pathol 69, 70-75
30. D'Errico, M., de Rinaldis, E., Blasi, M. F., Viti, V., Falchetti, M., Calcagnile, A., Sera, F., Saieva, C., Ottini, L., Palli, D., Palombo, F., Giuliani, A., and Dogliotti, E. (2009) Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. European journal of cancer 45, 461-469
31. Ma, X. J., Dahiya, S., Richardson, E., Erlander, M., and Sgroi, D. C. (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 11, R7
32. Jones, T. D., Eble, J. N., Wang, M., Maclennan, G. T., Jain, S., and Cheng, L. (2005) Clonal divergence and genetic heterogeneity in clear cell renal cell carcinomas with sarcomatoid transformation. Cancer 104, 1195-1203
33. Chen, X., Cheung, S. T., So, S., Fan, S. T., Barry, C., Higgins, J., Lai, K. M., Ji, J., Dudoit, S., Ng, I. O., Van De Rijn, M., Botstein, D., and Brown, P. O. (2002) Gene expression patterns in human liver cancers. Mol Biol Cell 13, 1929-1939
34. Tomlins, S. A., Mehra, R., Rhodes, D. R., Cao, X., Wang, L., Dhanasekaran, S. M., Kalyana-Sundaram, S., Wei, J. T., Rubin, M. A., Pienta, K. J., Shah, R. B., and Chinnaiyan, A. M. (2007) Integrative molecular concept modeling of prostate cancer progression. Nature genetics 39, 41-51
35. Gaspar, C., Cardoso, J., Franken, P., Molenaar, L., Morreau, H., Moslein, G., Sampson, J., Boer, J. M., de Menezes, R. X., and Fodde, R. (2008) Cross-species comparison of human and mouse intestinal polyps reveals conserved mechanisms in adenomatous polyposis coli (APC)-driven tumorigenesis. Am J Pathol 172, 1363-1380
36. Huang, K. H., Lan, Y. T., Chen, M. H., Chao, Y., Lo, S. S., Li, A. F., Wu, C. W., Chiou, S. H., Yang, M. H., Shyr, Y. M., and Fang, W. L. (2015) The Correlation Between RhoA Expression and Clinicopathological Characteristics in Gastric Cancer Patients After Curative Surgery. World J Surg 39, 2289-2299
37. Liu, N., Bi, F., Pan, Y., Sun, L., Xue, Y., Shi, Y., Yao, X., Zheng, Y., and Fan, D. (2004) Reversal of the malignant phenotype of gastric cancer cells by inhibition of RhoA expression and activity. Clin Cancer Res 10, 6239-6247
38. Zhou, J., Zhu, Y., Zhang, G., Liu, N., Sun, L., Liu, M., Qiu, M., Luo, D., Tang, Q., Liao, Z., Zheng, Y., and Bi, F. (2011) A distinct role of RhoB in gastric cancer suppression. Int J Cancer 128, 1057-1068
39. Taniguchi, K., Tsujitani, S., Tokuyasu, N., Naka, T., Tatebe, S., Kondo, A., and Ikeguchi, M. (2007) Rho-ROCK Expression Predicts the Prognosis in Patients with T3/T4 Gastric Cancer. Yonago Acta medica 50, 9-15
40. Wang, G., Hu, N., Yang, H. H., Wang, L., Su, H., Wang, C., Clifford, R., Dawsey, E. M., Li, J. M., Ding, T., Han, X. Y., Giffen, C., Goldstein, A. M., Taylor, P. R., and Lee, M. P. (2013) Comparison of global gene expression of gastric cardia and noncardia cancers from a high-risk population in china. PLoS One 8, e63826
41. Kim, H. K., Choi, I. J., Kim, C. G., Kim, H. S., Oshima, A., Michalowski, A., and Green, J. E. (2011) A gene expression signature of acquired chemoresistance to cisplatin and fluorouracil combination chemotherapy in gastric cancer patients. PLoS One 6, e16694
42. Cristescu, R., Lee, J., Nebozhyn, M., Kim, K. M., Ting, J. C., Wong, S. S., Liu, J., Yue, Y. G., Wang, J., Yu, K., Ye, X. S., Do, I. G., Liu, S., Gong, L., Fu, J., Jin, J. G., Choi, M. G., Sohn, T. S., Lee, J. H., Bae, J. M., Kim, S. T., Park, S. H., Sohn, I., Jung, S. H., Tan, P., Chen, R., Hardwick, J., Kang, W. K., Ayers, M., Hongyue, D., Reinhard, C., Loboda, A., Kim, S., and Aggarwal, A. (2015) Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 21, 449-456
43. Ooi, C. H., Ivanova, T., Wu, J., Lee, M., Tan, I. B., Tao, J., Ward, L., Koo, J. H., Gopalakrishnan, V., Zhu, Y., Cheng, L. L., Lee, J., Rha, S. Y., Chung, H. C., Ganesan, K., So, J., Soo, K. C., Lim, D., Chan, W. H., Wong, W. K., Bowtell, D., Yeoh, K. G., Grabsch, H., Boussioutas, A., and Tan, P. (2009) Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet 5, e1000676
44. Busuttil, R. A., George, J., Tothill, R. W., Ioculano, K., Kowalczyk, A., Mitchell, C., Lade, S., Tan, P., Haviv, I., and Boussioutas, A. (2014) A signature predicting poor prognosis in gastric and ovarian cancer represents a coordinated macrophage and stromal response. Clin Cancer Res 20, 2761-2772
45. Forster, S., Gretschel, S., Jons, T., Yashiro, M., and Kemmner, W. (2011) THBS4, a novel stromal molecule of diffuse-type gastric adenocarcinomas, identified by transcriptome-wide expression profiling. Mod Pathol 24, 1390-1403
46. Szasz, A. M., Lanczky, A., Nagy, A., Forster, S., Hark, K., Green, J. E., Boussioutas, A., Busuttil, R., Szabo, A., and Gyorffy, B. (2016) Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget 7, 49322-49333
47. Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehar, J., Kryukov, G. V., Sonkin, D., Reddy, A., Liu, M., Murray, L., Berger, M. F., Monahan, J. E., Morais, P., Meltzer, J., Korejwa, A., Jane-Valbuena, J., Mapa, F. A., Thibault, J., Bric-Furlong, E., Raman, P., Shipway, A., Engels, I. H., Cheng, J., Yu, G. K., Yu, J., Aspesi, P., Jr., de Silva, M., Jagtap, K., Jones, M. D., Wang, L., Hatton, C., Palescandolo, E., Gupta, S., Mahan, S., Sougnez, C., Onofrio, R. C., Liefeld, T., MacConaill, L., Winckler, W., Reich, M., Li, N., Mesirov, J. P., Gabriel, S. B., Getz, G., Ardlie, K., Chan, V., Myer, V. E., Weber, B. L., Porter, J., Warmuth, M., Finan, P., Harris, J. L., Meyerson, M., Golub, T. R., Morrissey, M. P., Sellers, W. R., Schlegel, R., and Garraway, L. A. (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603-607
48. Bindal, N., Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Kok, C., Jia, M., Bamford, S., Cole, C., Ward, S., Teague, J., Stratton, M. R., Campbell, P., and Futreal, A. P. (2011) COSMIC: the catalogue of somatic mutations in cancer. Genome Biology 12, P3
49. Mehlen, P., and Puisieux, A. (2006) Metastasis: a question of life or death. Nat Rev Cancer 6, 449-458
50. Paoli, P., Giannoni, E., and Chiarugi, P. (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta 1833, 3481-3498
51. Sahai, E., Alberts, A. S., and Treisman, R. (1998) RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. The EMBO journal 17, 1350-1361
52. Petrie, R. J., and Yamada, K. M. (2012) At the leading edge of three-dimensional cell migration. Journal of cell science 125, 5917-5926
53. Aoki, K., Maeda, F., Nagasako, T., Mochizuki, Y., Uchida, S., and Ikenouchi, J. (2016) A RhoA and Rnd3 cycle regulates actin reassembly during membrane blebbing. Proc Natl Acad Sci U S A 113, E1863-1871
54. Cho, J. Y., Lim, J. Y., Cheong, J. H., Park, Y. Y., Yoon, S. L., Kim, S. M., Kim, S. B., Kim, H., Hong, S. W., Park, Y. N., Noh, S. H., Park, E. S., Chu, I. S., Hong, W. K., Ajani, J. A., and Lee, J. S. (2011) Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res 17, 1850-1857
55. Cui, J., Chen, Y., Chou, W. C., Sun, L., Chen, L., Suo, J., Ni, Z., Zhang, M., Kong, X., Hoffman, L. L., Kang, J., Su, Y., Olman, V., Johnson, D., Tench, D. W., Amster, I. J., Orlando, R., Puett, D., Li, F., and Xu, Y. (2011) An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res 39, 1197-1207
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *