|
1. Messina, G., and Cossu, G. (2009) The origin of embryonic and fetal myoblasts: a role of Pax3 and Pax7. Genes & development 23, 902-905 2. Tajbakhsh, S. (2009) Skeletal muscle stem cells in developmental versus regenerative myogenesis. Journal of internal medicine 266, 372-389 3. Buckingham, M. (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Current opinion in genetics & development 16, 525-532 4. Buckingham, M., and Rigby, P. W. (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Developmental cell 28, 225-238 5. Shi, X., and Garry, D. J. (2006) Muscle stem cells in development, regeneration, and disease. Genes & development 20, 1692-1708 6. Haslett, J. N., Sanoudou, D., Kho, A. T., Bennett, R. R., Greenberg, S. A., Kohane, I. S., Beggs, A. H., and Kunkel, L. M. (2002) Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America 99, 15000-15005 7. McGreevy, J. W., Hakim, C. H., McIntosh, M. A., and Duan, D. (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Disease models & mechanisms 8, 195-213 8. Knight, J. D., and Kothary, R. (2011) The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skeletal muscle 1, 29 9. Bentzinger, C. F., Wang, Y. X., and Rudnicki, M. A. (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harbor perspectives in biology 4 10. Moncaut, N., Rigby, P. W., and Carvajal, J. J. (2013) Dial M(RF) for myogenesis. The FEBS journal 280, 3980-3990 11. Kim, J. H., Jin, P., Duan, R., and Chen, E. H. (2015) Mechanisms of myoblast fusion during muscle development. Current opinion in genetics & development 32, 162-170 12. Kim, J. H., Ren, Y., Ng, W. P., Li, S., Son, S., Kee, Y. S., Zhang, S., Zhang, G., Fletcher, D. A., Robinson, D. N., and Chen, E. H. (2015) Mechanical tension drives cell membrane fusion. Developmental cell 32, 561-573 13. Strunkelnberg, M., Bonengel, B., Moda, L. M., Hertenstein, A., de Couet, H. G., Ramos, R. G., and Fischbach, K. F. (2001) rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development 128, 4229-4239 14. Ruiz-Gomez, M., Coutts, N., Price, A., Taylor, M. V., and Bate, M. (2000) Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 102, 189-198 15. Bour, B. A., Chakravarti, M., West, J. M., and Abmayr, S. M. (2000) Drosophila SNS, a member of the immunoglobulin superfamily that is essential for myoblast fusion. Genes & development 14, 1498-1511 16. Artero, R. D., Castanon, I., and Baylies, M. K. (2001) The immunoglobulin-like protein Hibris functions as a dose-dependent regulator of myoblast fusion and is differentially controlled by Ras and Notch signaling. Development 128, 4251-4264 17. Beckett, K., and Baylies, M. K. (2007) 3D analysis of founder cell and fusion competent myoblast arrangements outlines a new model of myoblast fusion. Developmental biology 309, 113-125 18. Bogdan, S., and Klambt, C. (2003) Kette regulates actin dynamics and genetically interacts with Wave and Wasp. Development 130, 4427-4437 19. Luo, L., Liao, Y. J., Jan, L. Y., and Jan, Y. N. (1994) Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes & development 8, 1787-1802 20. Cifuentes-Diaz, C., Nicolet, M., Alameddine, H., Goudou, D., Dehaupas, M., Rieger, F., and Mege, R. M. (1995) M-cadherin localization in developing adult and regenerating mouse skeletal muscle: possible involvement in secondary myogenesis. Mechanisms of development 50, 85-97 21. Volonte, D., Peoples, A. J., and Galbiati, F. (2003) Modulation of myoblast fusion by caveolin-3 in dystrophic skeletal muscle cells: implications for Duchenne muscular dystrophy and limb-girdle muscular dystrophy-1C. Molecular biology of the cell 14, 4075-4088 22. Posey, A. D., Jr., Demonbreun, A., and McNally, E. M. (2011) Ferlin proteins in myoblast fusion and muscle growth. Current topics in developmental biology 96, 203-230 23. Sohn, R. L., Huang, P., Kawahara, G., Mitchell, M., Guyon, J., Kalluri, R., Kunkel, L. M., and Gussoni, E. (2009) A role for nephrin, a renal protein, in vertebrate skeletal muscle cell fusion. Proceedings of the National Academy of Sciences of the United States of America 106, 9274-9279 24. Millay, D. P., O'Rourke, J. R., Sutherland, L. B., Bezprozvannaya, S., Shelton, J. M., Bassel-Duby, R., and Olson, E. N. (2013) Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499, 301-305 25. Bi, P., Ramirez-Martinez, A., Li, H., Cannavino, J., McAnally, J. R., Shelton, J. M., Sanchez-Ortiz, E., Bassel-Duby, R., and Olson, E. N. (2017) Control of muscle formation by the fusogenic micropeptide myomixer. Science 356, 323-327 26. Zhang, Q., Vashisht, A. A., O'Rourke, J., Corbel, S. Y., Moran, R., Romero, A., Miraglia, L., Zhang, J., Durrant, E., Schmedt, C., Sampath, S. C., and Sampath, S. C. (2017) The microprotein Minion controls cell fusion and muscle formation. Nature communications 8, 15664 27. Aguilar, P. S., Baylies, M. K., Fleissner, A., Helming, L., Inoue, N., Podbilewicz, B., Wang, H., and Wong, M. (2013) Genetic basis of cell-cell fusion mechanisms. Trends in genetics : TIG 29, 427-437 28. El Demellawy, D., McGowan-Jordan, J., de Nanassy, J., Chernetsova, E., and Nasr, A. (2017) Update on molecular findings in rhabdomyosarcoma. Pathology 49, 238-246 29. Tiffin, N., Williams, R. D., Shipley, J., and Pritchard-Jones, K. (2003) PAX7 expression in embryonal rhabdomyosarcoma suggests an origin in muscle satellite cells. British journal of cancer 89, 327-332 30. Fletcher, C. D., Gustafson, P., Rydholm, A., Willen, H., and Akerman, M. (2001) Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: prognostic relevance of subclassification. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 19, 3045-3050 31. Zambo, I., and Vesely, K. (2014) [WHO classification of tumours of soft tissue and bone 2013: the main changes compared to the 3rd edition]. Ceskoslovenska patologie 50, 64-70 32. Ognjanovic, S., Linabery, A. M., Charbonneau, B., and Ross, J. A. (2009) Trends in childhood rhabdomyosarcoma incidence and survival in the United States, 1975-2005. Cancer 115, 4218-4226 33. Marshall, A. D., and Grosveld, G. C. (2012) Alveolar rhabdomyosarcoma - The molecular drivers of PAX3/7-FOXO1-induced tumorigenesis. Skeletal muscle 2, 25 34. Missiaglia, E., Williamson, D., Chisholm, J., Wirapati, P., Pierron, G., Petel, F., Concordet, J. P., Thway, K., Oberlin, O., Pritchard-Jones, K., Delattre, O., Delorenzi, M., and Shipley, J. (2012) PAX3/FOXO1 fusion gene status is the key prognostic molecular marker in rhabdomyosarcoma and significantly improves current risk stratification. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 30, 1670-1677 35. Monti, E., and Fanzani, A. (2016) Uncovering metabolism in rhabdomyosarcoma. Cell cycle 15, 184-195 36. Chhabra, E. S., and Higgs, H. N. (2007) The many faces of actin: matching assembly factors with cellular structures. Nature cell biology 9, 1110-1121 37. Burnette, D. T., Manley, S., Sengupta, P., Sougrat, R., Davidson, M. W., Kachar, B., and Lippincott-Schwartz, J. (2011) A role for actin arcs in the leading-edge advance of migrating cells. Nature cell biology 13, 371-381 38. Giannone, G., Dubin-Thaler, B. J., Rossier, O., Cai, Y., Chaga, O., Jiang, G., Beaver, W., Dobereiner, H. G., Freund, Y., Borisy, G., and Sheetz, M. P. (2007) Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128, 561-575 39. Charras, G. T. (2008) A short history of blebbing. Journal of microscopy 231, 466-478 40. Croft, D. R., Coleman, M. L., Li, S., Robertson, D., Sullivan, T., Stewart, C. L., and Olson, M. F. (2005) Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. The Journal of cell biology 168, 245-255 41. Charras, G., and Paluch, E. (2008) Blebs lead the way: how to migrate without lamellipodia. Nature reviews. Molecular cell biology 9, 730-736 42. Paluch, E. K., and Raz, E. (2013) The role and regulation of blebs in cell migration. Current opinion in cell biology 25, 582-590 43. Paluch, E., van der Gucht, J., and Sykes, C. (2006) Cracking up: symmetry breaking in cellular systems. The Journal of cell biology 175, 687-692 44. Charras, G. T., Hu, C. K., Coughlin, M., and Mitchison, T. J. (2006) Reassembly of contractile actin cortex in cell blebs. The Journal of cell biology 175, 477-490 45. Totsukawa, G., Wu, Y., Sasaki, Y., Hartshorne, D. J., Yamakita, Y., Yamashiro, S., and Matsumura, F. (2004) Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. The Journal of cell biology 164, 427-439 46. Rossy, J., Gutjahr, M. C., Blaser, N., Schlicht, D., and Niggli, V. (2007) Ezrin/moesin in motile Walker 256 carcinosarcoma cells: signal-dependent relocalization and role in migration. Experimental cell research 313, 1106-1120 47. McClatchey, A. I. (2014) ERM proteins at a glance. Journal of cell science 127, 3199-3204 48. Fehon, R. G., McClatchey, A. I., and Bretscher, A. (2010) Organizing the cell cortex: the role of ERM proteins. Nature reviews. Molecular cell biology 11, 276-287 49. Tyson, R. A., Zatulovskiy, E., Kay, R. R., and Bretschneider, T. (2014) How blebs and pseudopods cooperate during chemotaxis. Proceedings of the National Academy of Sciences of the United States of America 111, 11703-11708 50. Friedl, P., and Wolf, K. (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nature reviews. Cancer 3, 362-374 51. Otto, A., Collins-Hooper, H., Patel, A., Dash, P. R., and Patel, K. (2011) Adult skeletal muscle stem cell migration is mediated by a blebbing/amoeboid mechanism. Rejuvenation research 14, 249-260 52. Krahn, M. P., and Wodarz, A. (2012) Phosphoinositide lipids and cell polarity: linking the plasma membrane to the cytocortex. Essays in biochemistry 53, 15-27 53. Vance, J. E. (2008) Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. Journal of lipid research 49, 1377-1387 54. Murphy, E. J., Anderson, D. K., and Horrocks, L. A. (1993) Phospholipid and phospholipid fatty acid composition of mixed murine spinal cord neuronal cultures. Journal of neuroscience research 34, 472-477 55. Leventis, P. A., and Grinstein, S. (2010) The distribution and function of phosphatidylserine in cellular membranes. Annual review of biophysics 39, 407-427 56. McMahon, H. T., and Boucrot, E. (2015) Membrane curvature at a glance. Journal of cell science 128, 1065-1070 57. Czech, M. P. (2000) PIP2 and PIP3: complex roles at the cell surface. Cell 100, 603-606 58. Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J. D., Sheetz, M. P., and Meyer, T. (2000) Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100, 221-228 59. Wennstrom, S., Hawkins, P., Cooke, F., Hara, K., Yonezawa, K., Kasuga, M., Jackson, T., Claesson-Welsh, L., and Stephens, L. (1994) Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Current biology : CB 4, 385-393 60. Funamoto, S., Milan, K., Meili, R., and Firtel, R. A. (2001) Role of phosphatidylinositol 3' kinase and a downstream pleckstrin homology domain-containing protein in controlling chemotaxis in dictyostelium. The Journal of cell biology 153, 795-810 61. Insall, R. H., and Weiner, O. D. (2001) PIP3, PIP2, and cell movement--similar messages, different meanings? Developmental cell 1, 743-747 62. Kay, J. G., Koivusalo, M., Ma, X., Wohland, T., and Grinstein, S. (2012) Phosphatidylserine dynamics in cellular membranes. Molecular biology of the cell 23, 2198-2212 63. Helming, L., Winter, J., and Gordon, S. (2009) The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. Journal of cell science 122, 453-459 64. Marty, N. J., Holman, C. L., Abdullah, N., and Johnson, C. P. (2013) The C2 domains of otoferlin, dysferlin, and myoferlin alter the packing of lipid bilayers. Biochemistry 52, 5585-5592 65. Blondelle, J., Ohno, Y., Gache, V., Guyot, S., Storck, S., Blanchard-Gutton, N., Barthelemy, I., Walmsley, G., Rahier, A., Gadin, S., Maurer, M., Guillaud, L., Prola, A., Ferry, A., Aubin-Houzelstein, G., Demarquoy, J., Relaix, F., Piercy, R. J., Blot, S., Kihara, A., Tiret, L., and Pilot-Storck, F. (2015) HACD1, a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth. Journal of molecular cell biology 7, 429-440 66. Bach, A. S., Enjalbert, S., Comunale, F., Bodin, S., Vitale, N., Charrasse, S., and Gauthier-Rouviere, C. (2010) ADP-ribosylation factor 6 regulates mammalian myoblast fusion through phospholipase D1 and phosphatidylinositol 4,5-bisphosphate signaling pathways. Molecular biology of the cell 21, 2412-2424 67. Bothe, I., Deng, S., and Baylies, M. (2014) PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site. Development 141, 2289-2301 68. Oikawa, T., Oyama, M., Kozuka-Hata, H., Uehara, S., Udagawa, N., Saya, H., and Matsuo, K. (2012) Tks5-dependent formation of circumferential podosomes/invadopodia mediates cell-cell fusion. The Journal of cell biology 197, 553-568 69. Balagopalan, L., Chen, M. H., Geisbrecht, E. R., and Abmayr, S. M. (2006) The CDM superfamily protein MBC directs myoblast fusion through a mechanism that requires phosphatidylinositol 3,4,5-triphosphate binding but is independent of direct interaction with DCrk. Molecular and cellular biology 26, 9442-9455 70. Ijuin, T., and Takenawa, T. (2012) Role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) 5-phosphatase skeletal muscle- and kidney-enriched inositol polyphosphate phosphatase (SKIP) in myoblast differentiation. The Journal of biological chemistry 287, 31330-31341 71. Jeong, J., and Conboy, I. M. (2011) Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes. Biochemical and biophysical research communications 414, 9-13 72. Hochreiter-Hufford, A. E., Lee, C. S., Kinchen, J. M., Sokolowski, J. D., Arandjelovic, S., Call, J. A., Klibanov, A. L., Yan, Z., Mandell, J. W., and Ravichandran, K. S. (2013) Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497, 263-267 73. van den Eijnde, S. M., van den Hoff, M. J., Reutelingsperger, C. P., van Heerde, W. L., Henfling, M. E., Vermeij-Keers, C., Schutte, B., Borgers, M., and Ramaekers, F. C. (2001) Transient expression of phosphatidylserine at cell-cell contact areas is required for myotube formation. Journal of cell science 114, 3631-3642 74. Hirama, T., Das, R., Yang, Y., Ferguson, C., Won, A., Yip, C. M., Kay, J. G., Grinstein, S., Parton, R. G., and Fairn, G. D. (2017) Phosphatidylserine dictates the assembly and dynamics of caveolae in the plasma membrane. The Journal of biological chemistry 75. Bondesen, B. A., Mills, S. T., Kegley, K. M., and Pavlath, G. K. (2004) The COX-2 pathway is essential during early stages of skeletal muscle regeneration. American journal of physiology. Cell physiology 287, C475-483 76. Barry, D. J., Durkin, C. H., Abella, J. V., and Way, M. (2015) Open source software for quantification of cell migration, protrusions, and fluorescence intensities. The Journal of cell biology 209, 163-180 77. Charrasse, S., Comunale, F., Fortier, M., Portales-Casamar, E., Debant, A., and Gauthier-Rouviere, C. (2007) M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion. Molecular biology of the cell 18, 1734-1743 78. Hsiao, S. P., and Chen, S. L. (2010) Myogenic regulatory factors regulate M-cadherin expression by targeting its proximal promoter elements. The Biochemical journal 428, 223-233 79. Yaffe, D., and Saxel, O. (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270, 725-727 80. Sahai, E., and Marshall, C. J. (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nature cell biology 5, 711-719 81. Jones, A. E., Price, F. D., Le Grand, F., Soleimani, V. D., Dick, S. A., Megeney, L. A., and Rudnicki, M. A. (2015) Wnt/beta-catenin controls follistatin signalling to regulate satellite cell myogenic potential. Skeletal muscle 5, 14 82. Sens, K. L., Zhang, S., Jin, P., Duan, R., Zhang, G., Luo, F., Parachini, L., and Chen, E. H. (2010) An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. The Journal of cell biology 191, 1013-1027 83. Stadler, B., Blattler, T. M., and Franco-Obregon, A. (2010) Time-lapse imaging of in vitro myogenesis using atomic force microscopy. Journal of microscopy 237, 63-69 84. Riedl, J., Crevenna, A. H., Kessenbrock, K., Yu, J. H., Neukirchen, D., Bista, M., Bradke, F., Jenne, D., Holak, T. A., Werb, Z., Sixt, M., and Wedlich-Soldner, R. (2008) Lifeact: a versatile marker to visualize F-actin. Nature methods 5, 605-607 85. Morton, W. M., Ayscough, K. R., and McLaughlin, P. J. (2000) Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nature cell biology 2, 376-378 86. Cooper, J. A. (1987) Effects of cytochalasin and phalloidin on actin. The Journal of cell biology 105, 1473-1478 87. Constantin, B., Imbert, N., Besse, C., Cognard, C., and Raymond, G. (1995) Cultured rat skeletal muscle cells treated with cytochalasin exhibit normal dystrophin expression and intracellular free calcium control. Biology of the cell 85, 125-135 88. Dhawan, J., and Helfman, D. M. (2004) Modulation of acto-myosin contractility in skeletal muscle myoblasts uncouples growth arrest from differentiation. Journal of cell science 117, 3735-3748 89. Nowak, S. J., Nahirney, P. C., Hadjantonakis, A. K., and Baylies, M. K. (2009) Nap1-mediated actin remodeling is essential for mammalian myoblast fusion. Journal of cell science 122, 3282-3293 90. O'Connell, C. B., Tyska, M. J., and Mooseker, M. S. (2007) Myosin at work: motor adaptations for a variety of cellular functions. Biochimica et biophysica acta 1773, 615-630 91. Yoshida, K., and Soldati, T. (2006) Dissection of amoeboid movement into two mechanically distinct modes. Journal of cell science 119, 3833-3844 92. Ivanov, A. I., Hopkins, A. M., Brown, G. T., Gerner-Smidt, K., Babbin, B. A., Parkos, C. A., and Nusrat, A. (2008) Myosin II regulates the shape of three-dimensional intestinal epithelial cysts. Journal of cell science 121, 1803-1814 93. Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A., and Sellers, J. R. (2004) Mechanism of blebbistatin inhibition of myosin II. The Journal of biological chemistry 279, 35557-35563 94. Yamashiro, S., Mizuno, H., Smith, M. B., Ryan, G. L., Kiuchi, T., Vavylonis, D., and Watanabe, N. (2014) New single-molecule speckle microscopy reveals modification of the retrograde actin flow by focal adhesions at nanometer scales. Molecular biology of the cell 25, 1010-1024 95. Holz, R. W., Hlubek, M. D., Sorensen, S. D., Fisher, S. K., Balla, T., Ozaki, S., Prestwich, G. D., Stuenkel, E. L., and Bittner, M. A. (2000) A pleckstrin homology domain specific for phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P2 as being important in exocytosis. The Journal of biological chemistry 275, 17878-17885 96. Lacalle, R. A., Peregil, R. M., Albar, J. P., Merino, E., Martinez, A. C., Merida, I., and Manes, S. (2007) Type I phosphatidylinositol 4-phosphate 5-kinase controls neutrophil polarity and directional movement. The Journal of cell biology 179, 1539-1553 97. Lokuta, M. A., Senetar, M. A., Bennin, D. A., Nuzzi, P. A., Chan, K. T., Ott, V. L., and Huttenlocher, A. (2007) Type Igamma PIP kinase is a novel uropod component that regulates rear retraction during neutrophil chemotaxis. Molecular biology of the cell 18, 5069-5080 98. Saarikangas, J., Zhao, H., and Lappalainen, P. (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiological reviews 90, 259-289 99. Nakanishi, K., Kakiguchi, K., Yonemura, S., Nakano, A., and Morishima, N. (2015) Transient Ca2+ depletion from the endoplasmic reticulum is critical for skeletal myoblast differentiation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 29, 2137-2149 100. Varnai, P., and Balla, T. (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. The Journal of cell biology 143, 501-510 101. Tapscott, S. J., Thayer, M. J., and Weintraub, H. (1993) Deficiency in rhabdomyosarcomas of a factor required for MyoD activity and myogenesis. Science 259, 1450-1453 102. Fackler, O. T., and Grosse, R. (2008) Cell motility through plasma membrane blebbing. The Journal of cell biology 181, 879-884 103. Welf, E. S., Driscoll, M. K., Dean, K. M., Schafer, C., Chu, J., Davidson, M. W., Lin, M. Z., Danuser, G., and Fiolka, R. (2016) Quantitative Multiscale Cell Imaging in Controlled 3D Microenvironments. Developmental cell 36, 462-475 104. Callahan, M. K., Williamson, P., and Schlegel, R. A. (2000) Surface expression of phosphatidylserine on macrophages is required for phagocytosis of apoptotic thymocytes. Cell death and differentiation 7, 645-653 105. Helming, L., and Gordon, S. (2009) Molecular mediators of macrophage fusion. Trends in cell biology 19, 514-522 106. Ramachandran, S., Kumar, P. B., and Laradji, M. (2008) Lipid flip-flop driven mechanical and morphological changes in model membranes. The Journal of chemical physics 129, 125104 107. Fang, M., Rivas, M. P., and Bankaitis, V. A. (1998) The contribution of lipids and lipid metabolism to cellular functions of the Golgi complex. Biochimica et biophysica acta 1404, 85-100 108. Rambold, A. S., Cohen, S., and Lippincott-Schwartz, J. (2015) Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Developmental cell 32, 678-692 109. Sharom, F. J. (2011) Flipping and flopping--lipids on the move. IUBMB life 63, 736-746 110. Andersen, J. P., Vestergaard, A. L., Mikkelsen, S. A., Mogensen, L. S., Chalat, M., and Molday, R. S. (2016) P4-ATPases as Phospholipid Flippases-Structure, Function, and Enigmas. Frontiers in physiology 7, 275 111. Lin, Y. C., Niewiadomski, P., Lin, B., Nakamura, H., Phua, S. C., Jiao, J., Levchenko, A., Inoue, T., Rohatgi, R., and Inoue, T. (2013) Chemically inducible diffusion trap at cilia reveals molecular sieve-like barrier. Nature chemical biology 9, 437-443 112. Miyamoto, T., DeRose, R., Suarez, A., Ueno, T., Chen, M., Sun, T. P., Wolfgang, M. J., Mukherjee, C., Meyers, D. J., and Inoue, T. (2012) Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nature chemical biology 8, 465-470 113. Rudge, S. A., and Wakelam, M. J. (2014) SnapShot: Lipid kinase and phosphatase reaction pathways. Cell 156, 376-376 e371 114. Teng, S., Stegner, D., Chen, Q., Hongu, T., Hasegawa, H., Chen, L., Kanaho, Y., Nieswandt, B., Frohman, M. A., and Huang, P. (2015) Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration. Molecular biology of the cell 26, 506-517 115. Sekiya, T., Takenawa, T., and Nozawa, Y. (1984) Reorganization of membrane cholesterol during membrane fusion in myogenesis in vitro: a study using the filipin-cholesterol complex. Cell structure and function 9, 143-155 116. Nakanishi, M., Hirayama, E., and Kim, J. (2001) Characterisation of myogenic cell membrane: II. Dynamic changes in membrane lipids during the differentiation of mouse C2 myoblast cells. Cell biology international 25, 971-979 117. Nagata, Y., Kobayashi, H., Umeda, M., Ohta, N., Kawashima, S., Zammit, P. S., and Matsuda, R. (2006) Sphingomyelin levels in the plasma membrane correlate with the activation state of muscle satellite cells. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 54, 375-384 118. Nagata, Y., Partridge, T. A., Matsuda, R., and Zammit, P. S. (2006) Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. The Journal of cell biology 174, 245-253 119. Meacci, E., Nuti, F., Donati, C., Cencetti, F., Farnararo, M., and Bruni, P. (2008) Sphingosine kinase activity is required for myogenic differentiation of C2C12 myoblasts. Journal of cellular physiology 214, 210-220 120. Maekawa, M., and Fairn, G. D. (2015) Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. Journal of cell science 128, 1422-1433 121. Makino, A., Abe, M., Ishitsuka, R., Murate, M., Kishimoto, T., Sakai, S., Hullin-Matsuda, F., Shimada, Y., Inaba, T., Miyatake, H., Tanaka, H., Kurahashi, A., Pack, C. G., Kasai, R. S., Kubo, S., Schieber, N. L., Dohmae, N., Tochio, N., Hagiwara, K., Sasaki, Y., Aida, Y., Fujimori, F., Kigawa, T., Nishibori, K., Parton, R. G., Kusumi, A., Sako, Y., Anderluh, G., Yamashita, M., Kobayashi, T., Greimel, P., and Kobayashi, T. (2017) A novel sphingomyelin/cholesterol domain-specific probe reveals the dynamics of the membrane domains during virus release and in Niemann-Pick type C. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 31, 1301-1322 122. Li, H. G., Wang, Q., Li, H. M., Kumar, S., Parker, C., Slevin, M., and Kumar, P. (2007) PAX3 and PAX3-FKHR promote rhabdomyosarcoma cell survival through downregulation of PTEN. Cancer letters 253, 215-223 123. Zhu, B., Zhang, M., Williams, E. M., Keller, C., Mansoor, A., and Davie, J. K. (2016) TBX2 represses PTEN in rhabdomyosarcoma and skeletal muscle. Oncogene 35, 4212-4224 |