帳號:guest(3.133.133.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王安妮
作者(外文):Wang, An-Ni
論文名稱(中文):雙功能CSαβ模組之分子設計
論文名稱(外文):Molecular Design of a Dual Functional Cysteine-Stabilized αβ (CSαβ) Motif
指導教授(中文):呂平江
指導教授(外文):Lyu, Ping-Chiang
口試委員(中文):鄭惠春
蘇士哲
口試委員(外文):Cheng, Hui-Chun
Sue, Shih-Che
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:105080505
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:73
中文關鍵詞:CSαβ模組植物防禦素蠍毒蛋白
外文關鍵詞:CSαβmotifplantdefensinscorpiontoxin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:236
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
CSαβ模組由一個α-螺旋以及一個反平行的β-摺疊組成,並由三或四對雙硫鍵連接,形成非常穩定的結構,這使得CSαβ模組成為一個很適合研究蛋白質工程學的支架。由於結構的相似性,我們用綠豆防禦蛋白VrD1作為含有CSαβ結構的模板,利用點突變技術去改造出一個蛋白質,不僅具有原本的生物活性,還有類似蠍毒蛋白抑制離子通道功能。有一類蠍毒蛋白 (α-KTxs)具有一段活性多肽K-C4-X-N 可以專一性地去抑制電壓門控鉀離子通道(Kv1)。根據序列比對分析,我們將VrD1對應到的胺基酸(N32C33K34G35)突變成α-KTxs活性肽鏈K-C4-X-N,也建構出VrD1-E8Q, VrD1-T39K和VrD1-Y41K,使VrD1與離子通道的作用位置能帶更多正電。我們測試這些蛋白的電生理活性與抑制麵包蟲α-澱粉水解酶的功能,以探討重組VrD1的突變的胺基酸對鉀離子通道抑制功能與VrD1原本的抗α-澱粉水解酶活性之間的關係。
實驗結果顯示單點的賴氨酸替換無法提升抑制電壓門控鉀離子通道的能力,且在Loop 3位置上或是附近的突變 (G35N、T39K和Y41K)會導致VrD1抑制TMA的能力下降。另一方面,α-KTxs的活性肽鏈K-C-X-N可提升VrD1抑制特定Kv1通道的功能且不影響原本阻斷TMA的活性。在此我們製造出了雙功能的重組蛋白質。然而,僅使用點突變不足以使一個非毒素的植物防禦素成為有效的抑制離子通道毒蛋白,這顯示出CSαβ模組的最佳分子設計條件還需要更多的研究。根據結構對接分析,序列的N端區域看似會在VrD1和Kv1通道作用時形成阻礙,這個發現可以做為未來研究非毒素CSαβ模組成為離子通道阻斷劑的一個可行的分子設計方向。
Cysteine-stabilized αβ (CSαβ) motif consists an α-helix and an antiparallel β-sheet, connected by three or four disulfide bonds which provide high stablity and make this motif as a suitable framework for molecular engineering. Due to structural similarity, we utilized Vigna radiata plant defensin 1 protein (VrD1) as a template containing CSαβ motif to engineer a modified protein bearing not only its original function but also the channel blocking activity like scorpion toxin by point mutagenesis method in this study. Sequence K-C4-X-N is the toxin signature of α-KTxs scorpion toxins, which specifically affect voltage-gated potassium (Kv1) channel. According to sequence alignment, we mutated the corresponding positions (N32C33K34G35) in VrD1 to the toxin signature (K-C4-X-N) of α-KTxs, and also constructed mutants VrD1-E8Q, VrD1-T39K, and VrD1-Y41K to increase positive charge on the binding interface to channel. Both the electrophysiological recording and Tenebrio molitor larvae α-amylase (TMA) inhibition assay were conducted to investigate the function and characteristics of modified VrD1 proteins.
The results showed that Lysine substitution could not increase hKv channel blocking ability of VrD1, and the mutations on or near Loop 3 of VrD1 (G35N, T39K and Y41K) reduced the TMA inhibition. On the contray, VrD1 bearing toxin signature K-C-X-N increased the inhibition to sepecific Kv1 channels and retain the TMA inhibition. Here, we created a dual functional protein; however, the ability of using point mutation to develope nontoxic plant defensin into an efficient ion channel blocking toxin was limited. According to docking analysis, the N-terminal region seemed to be the obstacle in the interaction between VrD1 and Kv1 channel. This provided a feasible direction for molecular design of nontoxic CSαβ motif into the potent ion channel blocker.
Chapter I Introduction 1
1.1 Protein engineering 1
1.2 Cysteine-stabilized αβ motif 1
1.3 Scorpion K+ channel toxins α-KTx 2
1.4 Plant defensin and Vigna radiata plant defensin 1 protein (VrD1) 3
1.5 Aim of this thesis 4
Chapter II Materials and Methods 5
2.1 Construction of site-directed mutated recombinant VrD1 (rVrD1) 5
2.2 Expression and purification of rVrD1 6
2.3 Protein concentration determination (BCA protein assay) 7
2.4 Protein identification 7
2.5 Sulfhydryl assay (Ellman’s test) 8
2.6 Secondary and tertiary structure analysis 8
2.7 Purification of Tenebrio molitor larvae α-amylase 9
2.8 TMA activity assay and inhibitory function assay of rVrD1 10
2.9 Electrophysiology study (patch clamp whole cell recording) 11
Chapter III Results and Discussion 12
3.1 Construction of point mutated rVrD1 12
3.2 Purification and identification of rVrD1 12
3.3 Characterization of rVrD1 14
3.4 TMA inhibition assay of rVrD1 15
3.5 Electrophysiological Recordings 17
3.6 Molecular modeling and docking simulation 19
Chapter IV Conclusion 22
References 69
1. Hey, T., Fiedler, E., Rudolph, R. & Fiedler, M. Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends in Biotechnology 23, 512-522 (2005).
2. Yang, Y.F. Development and engineering of CSαβ motif for biomedical application., Biomedical Science, Engineering and Technology, Prof. Dhanjoo N. Ghista (Ed.), ISBN: 978-953-307-471-979, InTech. (2012).
3. Yang, Y.F. et al. Alanine substitutions of noncysteine residues in the cysteine-stabilized αβ motif. Protein Science 18, 1498–1506 (2009).
4. Dimarcq, J.L. & Bulet, P. Cysteine‐rich antimicrobial peptides in invertebrates. Biopolymers 47, 465-477 (1998).
5. DiasRde, O. & Francoa, O.L. Cysteine-stabilized αβ defensins: From a common fold to antibacterial activity. Peptides 72, 64-72 (2015).
6. Cohen, L. et al. Drosomycin, an innate immunity peptide of drosophila melanogaster, interacts with the fly voltage-gated sodium channel. Biological Chemistry 284, 23558-23563 (2009).
7. Chen, R. & Chung, S.H. Binding modes of μ-conotoxin to the bacterial sodium channel (NaVAb). Biophysical Journal 102, 483-488 (2012).
8. Xiang, F. et al. Plectasin, first animal toxin-like fungal defensin blocking potassium channels through recognizing channel pore region. Toxins 7, 34-42 (2015).
9. Assadi-Porter, F.M., Abildgaard, F., Blad, H. & Markley, J.L. Correlation of the sweetness of variants of the protein brazzein with patterns of hydrogen bonds detected by NMR spectroscopy. The Journal of Biological Chemistry 278, 31331-31339 (2003).
10. Zhao, Q., Chae, Y.K. & Markley, J.L. NMR solution structure of ATTp, an arabidopsis thaliana trypsin inhibitor. Biochemistry 41, 12284-12296 (2002).
11. Vita, C., Roumestand, C., Toma, F. & Me'nez, A. Scorpion toxins as natural scaffolds for protein engineering. PNAS 92, 6404-6408 (1995).
12. CarvalhoAde, O. & Gomes, V.M. Plant defensins and defensin-like peptides - biological activities and biotechnological applications. Current Pharmaceutical Design 17, 4270-4293 (2011).
13. Zhu, S. et al. Evolutionary diversification of mesobuthus α-scorpion toxins affecting sodium channels. Molecular & Cellular Proteomics 11, M111.012054 (2012).
14. Assadi-Porter, F.M., Aceti, D.J. & Markley, J.L. Sweetness determinant sites of brazzein, a small, heat-stable, sweet-tasting protein. Archives of Biochemistry and Biophysics 376, 259-265 (2000).
15. Zhu, S. et al. Experimental conversion of a defensin into a neurotoxin: Implications for origin of toxic function. Molecular Biology and Evolution 31, 546–559 (2014).
16. Zhu, S.Y., Gao, B. & Tytgat, J. Phylogenetic distribution, functional epitopes and evolution of the CSαβ superfamily. Cellular and Molecular Life Sciences 62, 2257–2269 (2005).
17. Fry, B.G. et al. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annual Review of Genomics and Human Genetics 10, 483-511 (2009).
18. Tytgat, J. et al. A unified nomenclature for short-chain peptides isolated from scorpion venoms: α-KTx molecular subfamilies. Trends in Pharmacologucal Sciences 20, 444-447 (1999).
19. Rodrı´guezdelaVega, R.C. & Possani, L.D. Current views on scorpion toxins specific for K+-channels. Toxicon 43, 865-875 (2004).
20. Zhu, S.Y. et al. MeuTXKβ1, a scorpion venom-derived two-domain potassium channel toxin-like peptide with cytolytic activity. Biochimica et Biophysica Acta 1804, 872-883 (2010).
21. Han, S. et al. Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease. Biological Chemistry 283, 19058-19065 (2008).
22. Chen, Z. et al. Toxin acidic residue evolutionary function-guided design of de novo peptide drugs for the immunotherapeutic target, the Kv1.3 channel. Scientific Reports 5 (2015).
23. Chen, R. & Chung, S.H. Binding modes of two scorpion toxins to the voltage-gated potassium channel Kv1.3 revealed from molecular dynamics. Toxins 6, 2149-2161 (2014).
24. Gordon, D., Chen, R. & Chung, S.H. Computational methods of studying the binding of toxins from venomous animals to biological ion channels: theory and applications. Physiol Reviews 93, 767-802 (2013).
25. Lanigan, M.D. et al. Mutating a critical lysine in ShK toxin alters its binding configuration in the pore-vestibule region of the voltage-gated potassium channel, Kv1.3+. Biochemistry 41, 11963-11971 (2002).
26. Vriens, K. et al. The antifungal plant defensin AtPDF2.3 from Arabidopsis thaliana blocks potassium channels. Scientific Reports 6, 32121 (2016 ).
27. Zhu, S. et al. Experimental conversion of a defensin into a neurotoxin: Implications for origin of toxic function. Molecular Biology and Evilution, 546-559 (2014).
28. Thomma, B.P., Cammue, B.P. & Thevissen, K. Plant defensins. Planta 216, 193-202 (2002).
29. Spelbrink, R.G. et al. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. Plant Physiol 135, 2055-2067 (2004).
30. Osborn, R.W. et al. Isolation and characterisation of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Letters 368, 257-262 (1995).
31. Wijaya, R., Neumann, G.M., Condron, R., Hughes, A.B. & Polya, G.M. Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Science 159, 243-255 (2000).
32. Stotz, H.U., Thomson, J. & Wang, Y.J. Plant defensins. Plant Signaling and Behavior 4, 1010-1012 (2009).
33. Thevissen, K. et al. Fungal membrane responses induced by plant defensins and thionins. The Journal of Biological Chemistry 271, 15018-15025 (1996).
34. Stotz, H.U., Spence, B. & Wang, Y.J. A defensin from tomato with dual function in defense and development. Plant Molecular Biology 71, 131–143 (2009).
35. Lin, K.F. et al. Structure-based protein engineering for α-amylase inhibitory activity of plant defensin. Proteins 68, 530–540 (2007).
36. Chen, K.C., Lin, C.Y., Kuan, C.C., Sung, H.Y. & Chen, C.S. A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid. Journal of Agricultural and Food Chemistry 50, 7258-7263 (2002).
37. Liu, Y.J. et al. Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins 63, 777-786 (2006).
38. Kushmerick, C., Castro, M.d.S., Cruz, J.S., Jr, C.B. & Beirão, P.S.L. Functional and structural features of γ-zeathionins, a new class of sodium channel blockers. FEBS Letters 440, 305-306 (1998).
39. Miller, G.L. Use of dinitrosaiicyiic acid reagent for determination of reducing sugar. Analytical chemistry 31, 426-428 (1959).
40. Bernfeld, P. Amylases, α and β. Methods in Enzymology. 1, 149-158 (1955).
41. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Research 14, 1188-1190 (2004).
42. Ghisaidoobe, A.B.T. & Chung, S.J. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: a focus on Förster resonance energy transfer techniques. International Journal of Molecular Sciences 15, 22518-22538 (2014).
43. Buonocore, V., Poerio, E., Gramenzi, F. & VittorioSilano Affinity column purification of amylases on protein inhibitors from wheat kernel. Journal of Chromatography A 114, 109-114 (1975).
44. Ye, F. et al. The scorpion toxin analogue BmKTX-D33H as a potential Kv1.3 channel-selective immunomodulator for autoimmune diseases. Toxins 8, 115 (2016).
45. Takacs, Z. et al. A designer ligand specific for Kv1.3 channels from a scorpion neurotoxin-based library. Proceedings of the National Academy of Sciences of the United States of America 106, 22211-22216 (2009).
46. Biasini, M. et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research 42, 252-258 (2014).
47. Chen, R., Li, L. & Weng, Z. ZDOCK: an initial-stage protein docking algorithm. Proteins 52, 80-87 (2003).
48. Lange, A. et al. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 440, 959-962 (2006).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *