帳號:guest(3.143.5.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊哲岳
作者(外文):Yang, Che-Yueh
論文名稱(中文):介白素8與CXC-受體拮抗劑RP4結構和生物活性之比較
論文名稱(外文):Comparison of the structure and biological activity of interleukin-8 and CXC-receptor antagonists, RP4
指導教授(中文):程家維
指導教授(外文):Cheng, Jya-Wei
口試委員(中文):陳金榜
龍鳳娣
周裕珽
口試委員(外文):Chen, Chin-Pan
Lung, Feng-Di
Chou, Yu-Ting
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:105080502
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:51
中文關鍵詞:介白素8CXCR1/2抗發炎藥物30s loopELR motifN loopX-光結晶學ELISA親合力試驗
外文關鍵詞:IL-8CXCR1/2anti-inflammatory drug30s loopELR motifN loopX-ray crystallographyELISA binding assay
相關次數:
  • 推薦推薦:0
  • 點閱點閱:29
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
ELR-CXC趨化素是導致嗜中性球性發炎的關鍵角色。過度嗜中性球浸潤將損害組織及產生若干種發炎性疾病。由上皮細胞或巨噬細胞分泌的一種趨化素,介白素8,可與ELR-CXC受器,CXCR1和CXCR2,緊密結合並在人類嗜中性球中觸發二級訊號傳導,其中包括了細胞趨化性、成粒作用以及產生過氧化物(ROS)。在我們先前研究中已設計介白素8類似物,RP4,並可有效抑制IL-8與CXCR1/2所導致的嗜中性球趨化作用。本研究中,培養出RP4晶體並且利用晶體X-光繞射得到解析度1.8Å的蛋白質結構。根據結構顯示,在介白素8的 N-loop 上,T12S以及K11R兩個點突變使蛋白質分子靜電力以及胺基酸主鏈發生變化,進而促使RP4與CXCR1/2有更強的親合力,而RP4與CXCR1/2的生物活性則是透過改變ELR結構而被抑制。ELISA蛋白親合力實驗則指出RP4與CXCR1/2有比介白素8與CXCR1/2低於3至4倍的解離常數。
介白素8已被證實與多種慢性疾病有關,包括類風濕關節炎、數種癌症及炎症等,本實驗結果中清楚呈現RP4何以作為CXCR1/2的強力拮抗劑, RP4可望藉抑制上游GPCR訊號而發展成為新一代蛋白質藥物的潛力。
ELR-CXC chemokines play an important role in many neutrophilic inflammations. Excessive neutrophil infiltration mediated by the ELR-CXC chemokine usually leads to tissue damage and several inflammatory diseases. Interleukin 8 (IL-8, CXCL8), one of chemokine is secreted by epithelial cells or macrophages has been reported can binds to ELR-CXC receptor, CXCR1 and CXCR2. Then, it triggers signal transduction in human neutrophils, including chemotaxis, granulation, and generation of reactive oxygen species (ROS). Our previous studies have designed an IL-8 analogue, RP4, significantly inhibits CXCR1/2 triggered neutrophil chemotaxis. In this study, we cultivated crystals of RP4 and determined the molecular structure of RP4 at 1.8Å resolution by crystallography. According to structure, T12S and K11R site-direct mutagenesis on N-loops of IL-8 enhances the binding affinity between IL-8 and CXCR1 with higher charge–charge interaction and backbone slight displacement. Although RP4 has a high binding affinity of CXCR1/2, the RP4-CXCR1/2 complexes cannot pass signal transduction. ELISA binding experiments showed dissociation constant of RP4 and CXCR2 was lower 3-4 folds than IL-8-CXCR2 binding.
It has shown IL-8 related to a number of chronic diseases, including rheumatoid arthritis (RA), some cancers and some inflammatory diseases. From our results, we could explain easily why RP4 acted as an aggressive CXCR1/2 antagonist. RP4 showed potential as new chances in the development of anti-inflammatory drugs.
Abstract------------------------------------------------------------- 3
Table of content----------------------------------------------------- 4
Chapter 1 Introduction----------------------------------------------- 5
Chapter 2 Material and Methods--------------------------------------- 11
2.1 Chemical and Reagents-------------------------------------------- 11
2.2 Tricine–SDS-PAGE------------------------------------------------ 11
2.3 Construct and transform the vector of IL-8 and pRP4-------------- 12
2.4 Expression and purification of recombinant IL-8 and RP4---------- 13
2.5 RP4 Crystallization---------------------------------------------- 14
2.6 RP4 crystals X-ray diffraction and structure modeling------------ 15
2.7 Determination of dissociation constants by ELISA----------------- 16
Chapter 3 Results---------------------------------------------------- 20
3.1 Structure overview----------------------------------------------- 20
3.2 Structure Comparison with IL-8----------------------------------- 20
3.3 RP4 inhibits activities of CXCR1/2 signal transduction by RP4 F33 adjusted ELR motif modification-------------------------------------- 21
3.4 K11R and T12S site mutagenesis enhance RP4 and CXCR1 binding affinity --------------------------------------------------------------------- 22
3.5 The binding affinity of RP4 are 3-4 folds stronger than IL-8 to both CXCR1 and CXCR2------------------------------------------------------ 23
Chapter 4 Discussion and Conclusion---------------------------------- 25
Abbreviation Index--------------------------------------------------- 47
Reference------------------------------------------------------------ 48

1. Proudfoot, A.E., Chemokine receptors: multifaceted therapeutic targets. Nat Rev Immunol, 2002. 2(2): p. 106-15.
2. Power, C.A. and T.N. Wells, Cloning and characterization of human chemokine receptors. Trends Pharmacol Sci, 1996. 17(6): p. 209-13.
3. Bazan, J.F., et al., A new class of membrane-bound chemokine with a CX3C motif. Nature, 1997. 385(6617): p. 640-4.
4. Nomiyama, H., N. Osada, and O. Yoshie, Systematic classification of vertebrate chemokines based on conserved synteny and evolutionary history. Vol. 18. 2012.
5. Baggiolini, M., Chemokines and leukocyte traffic. Nature, 1998. 392(6676): p. 565-8.
6. Antonelli, A., et al., Chemokine (C-X-C motif) ligand (CXCL)10 in autoimmune diseases. Autoimmun Rev, 2014. 13(3): p. 272-80.
7. Clark-Lewis, I., et al., Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proc Natl Acad Sci U S A, 1993. 90(8): p. 3574-7.
8. Henson, P.M. and R.W. Vandivier, The matrix degrades, neutrophils invade. Nat Med, 2006. 12(3): p. 280-1.
9. Laterveer, L., et al., Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood, 1995. 85(8): p. 2269-75.
10. Woods, J.M., et al., Reduction of inflammatory cytokines and prostaglandin E2 by IL-13 gene therapy in rheumatoid arthritis synovium. J Immunol, 2000. 165(5): p. 2755-63.
11. Beeh, K.M., et al., Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest, 2003. 123(4): p. 1240-7.
12. Kurdowska, A., et al., Anti-interleukin-8 autoantibodies in patients at risk for acute respiratory distress syndrome. Crit Care Med, 2002. 30(10): p. 2335-7.
13. Park, S.Y., et al., Interleukin-8 is related to poor chemotherapeutic response and tumourigenicity in hepatocellular carcinoma. Eur J Cancer, 2014. 50(2): p. 341-50.
14. Liu, Y.N., et al., IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. Oncotarget, 2015. 6(12): p. 10415-31.
15. Ha, H., B. Debnath, and N. Neamati, Role of the CXCL8-CXCR1/2 Axis in Cancer and Inflammatory Diseases. Theranostics, 2017. 7(6): p. 1543-1588.
16. Nicholls, D.J., et al., Identification of a putative intracellular allosteric antagonist binding-site in the CXC chemokine receptors 1 and 2. Mol Pharmacol, 2008. 74(5): p. 1193-202.
17. Park, S.H., et al., Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature, 2012. 491(7426): p. 779-83.
18. Helmer, D., et al., Rational design of a peptide capture agent for CXCL8 based on a model of the CXCL8:CXCR1 complex. RSC Advances, 2015. 5(33): p. 25657-25668.
19. Liou, J.W., et al., In Silico Analysis Reveals Sequential Interactions and Protein Conformational Changes during the Binding of Chemokine CXCL-8 to Its Receptor CXCR1. PLoS One, 2014. 9(4).
20. Salanga, C.L. and T.M. Handel, Chemokine oligomerization and interactions with receptors and glycosaminoglycans: the role of structural dynamics in function. Exp Cell Res, 2011. 317(5): p. 590-601.
21. Szpakowska, M., et al., Function, diversity and therapeutic potential of the N-terminal domain of human chemokine receptors. Biochem Pharmacol, 2012. 84(10): p. 1366-80.
22. Uribe-Querol, E. and C. Rosales, Neutrophils in Cancer: Two Sides of the Same Coin. J Immunol Res, 2015. 2015.
23. Liu, Q., et al., The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev, 2016. 31: p. 61-71.
24. Li, F., et al., CXCL8((3-73))K11R/G31P antagonizes the neutrophil chemoattractants present in pasteurellosis and mastitis lesions and abrogates neutrophil influx into intradermal endotoxin challenge sites in vivo. Vet Immunol Immunopathol, 2002. 90(1-2): p. 65-77.
25. Cheng, H.T., et al., Effects of K11R and G31P Mutations on the Structure and Biological Activities of CXCL8: Solution Structure of Human CXCL8(3-72)K11R/G31P. Molecules, 2017. 22(7).
26. LIN, L.-J.a.C., Jya‐Wei, Design and characterization of an ELR-CXC chemokine receptor antagonist. 2015.
27. Brat, D.J., A.C. Bellail, and E.G. Van Meir, The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol, 2005. 7(2): p. 122-33.
28. Baggiolini, M., A. Walz, and S.L. Kunkel, Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. J Clin Invest, 1989. 84(4): p. 1045-9.
29. Manfred Aueri, J.K., Sabine Schleischitzl, Malcolm D. Walkinshaw, Erich Wasserbauerl, and G.E.a.I.J.D. Lindleyl, Crystallization and preliminary X-ray crystallographic study of interleukin-8. 1990.
30. Baldwin, E.T., et al., Crystallization of human interleukin-8. A protein chemotactic for neutrophils and T-lymphocytes. J Biol Chem, 1990. 265(12): p. 6851-3.
31. Laemmli, U.K., Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 1970. 227: p. 680.
32. Bothe, D., M. Simonis, and H. von Dohren, A sodium dodecyl sulfate-gradient gel electrophoresis system that separates polypeptides in the molecular weight range of 1500 to 100,000. Anal Biochem, 1985. 151(1): p. 49-54.
33. Hashimoto, F., et al., An improved method for separation of low-molecular-weight polypeptides by electrophoresis in sodium dodecyl sulfate-polyacrylamide gel. Anal Biochem, 1983. 129(1): p. 192-9.
34. Schagger, H., Tricine-SDS-PAGE. Nat Protoc, 2006. 1(1): p. 16-22.
35. Emsley, P., et al., Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 4): p. 486-501.
36. Adams, P.D., et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 2): p. 213-21.
37. Winn, M.D., et al., Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 4): p. 235-42.
38. Pollard, T.D., A Guide to Simple and Informative Binding Assays. Mol Biol Cell, 2010. 21(23): p. 4061-7.
39. Eble, J.A., Titration ELISA as a Method to Determine the Dissociation Constant of Receptor Ligand Interaction. J Vis Exp, 2018(132).
40. Liliom, K., et al., Quantitative evaluation of indirect ELISA. Effect of calmodulin antagonists on antibody binding to calmodulin. J Immunol Methods, 1991. 143(1): p. 119-25.
41. Orosz, F. and J. Ovadi, A simple method for the determination of dissociation constants by displacement ELISA. J Immunol Methods, 2002. 270(2): p. 155-62.
42. Kendrick, A.A., et al., The dynamics of interleukin-8 and its interaction with human CXC receptor I peptide. Protein Sci, 2014. 23(4): p. 464-80.
43. Clark-Lewis, I., et al., Structural requirements for interleukin-8 function identified by design of analogs and CXC chemokine hybrids. J Biol Chem, 1994. 269(23): p. 16075-81.
44. Skelton, N.J., et al., Structure of a CXC chemokine-receptor fragment in complex with interleukin-8. Structure, 1999. 7(2): p. 157-68.
45. Jiang, S.J., et al., Peptides derived from CXCL8 based on in silico analysis inhibit CXCL8 interactions with its receptor CXCR1. Sci Rep, 2015. 5: p. 18638.
46. Nasser, M.W., et al., Differential activation and regulation of CXCR1 and CXCR2 by CXCL8 monomer and dimer. J Immunol, 2009. 183(5): p. 3425-32.
47. Khanjani, S., et al., NFκB and AP-1 Drive Human Myometrial IL8 Expression. Mediators Inflamm, 2012. 2012.
48. Waugh, D.J. and C. Wilson, The interleukin-8 pathway in cancer. Clin Cancer Res, 2008. 14(21): p. 6735-41.
49. Baggiolini, M., B. Dewald, and B. Moser, Human chemokines: an update. Annu Rev Immunol, 1997. 15: p. 675-705.
50. Fernando, H., et al., Dimer dissociation is essential for interleukin-8 (IL-8) binding to CXCR1 receptor. J Biol Chem, 2004. 279(35): p. 36175-8.
51. Rajagopalan, L. and K. Rajarathnam, Ligand selectivity and affinity of chemokine receptor CXCR1. Role of N-terminal domain. J Biol Chem, 2004. 279(29): p. 30000-8.
52. Jones, S.A., et al., Chemokine antagonists that discriminate between interleukin-8 receptors. Selective blockers of CXCR2. J Biol Chem, 1997. 272(26): p. 16166-9.
53. Ravindran, A., P.R. Joseph, and K. Rajarathnam, Structural basis for differential binding of the interleukin-8 monomer and dimer to the CXCR1 N-domain: role of coupled interactions and dynamics. Biochemistry, 2009. 48(37): p. 8795-805.
54. Berkamp, S., et al., Structure of monomeric Interleukin-8 and its interactions with the N-terminal Binding Site-I of CXCR1 by solution NMR spectroscopy. J Biomol NMR, 2017. 69(3): p. 111-121.
55. Joseph, P.R., et al., Probing the role of CXC motif in chemokine CXCL8 for high affinity binding and activation of CXCR1 and CXCR2 receptors. J Biol Chem, 2010. 285(38): p. 29262-9.
56. Murphy, P.M., et al., International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev, 2000. 52(1): p. 145-76.
57. Mortier, A., J. Van Damme, and P. Proost, Regulation of chemokine activity by posttranslational modification. Pharmacol Ther, 2008. 120(2): p. 197-217.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *