|
Aird, S.D. (2002). Ophidian envenomation strategies and the role of purines, Toxicon. 40(4), 335–393. Araki, S., Ishida, T., Yamamoto, T., Kaji, K., Hayashi, H. (1993). Induction of apoptosis by hemorrhagic snake venom in vascular endothelial cells. Biochem Biophys Res Commun. 190, 148–53. Arnold, C. (2016). Vipers, mambas and taipans: the escalating health crisis over snakebites. Nature. 537 (7618), 26–8. Balali Bahadorani, M. (2016). Cytotoxic Effect of Snake (Echis Carinatus) Venom on Human Embryonic Kidney Cells (HEK 293), Vol 3. Beckerbauer, L., Tepe, J.J., Eastman, R.A., Mixter, P.F., Williams, R.M., and Reeves, R. (2002). Differential effects of FR900482 and FK317 on apoptosis, IL-2 gene expression, and induction of vascular leak syndrome. Chem Biol 9, 427-441. Blaylock, R.S., Lichtman, A.R., and Potgieter, P.D. (1985). Clinical manifestations of Cape cobra (Naja nivea) bites. A report of 2 cases. S Afr Med J 68, 342-344. Boldrini-França, J., Corrêa-Netto, C., Silva, M.M, Rodrigues, R.S., De La Torre, P., Pérez, A., Soares, A.M., Zingali, R.B., Nogueira, R.A., Rodrigues, V.M., Sanz, L., Calvete, J.J. (2010). Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management. J Proteomics. 73(9), 1758-1776. Botes, D.P. (1971). Snake venom toxins. The amino acid sequences of toxins and from Naja nivea venom and the disulfide bonds of toxin. J. Biol. Chem. 246(23), 7383-7891. Botes, D.P., Strydom, D.J., Anderson, C.G., Christensen, P.A. (1971). Snake venom toxins. Purification and properties of three toxins from Naja nivea (Linnaeus) (Cape cobra) venom and the amino acid sequence of toxin delta. J. Biol. Chem. 246(10), 3132-3139. Botes, D.P., Viljoen, C.C. (1976). The amino acid sequence of three non-curarimimetic toxins from Naja nivea venom. Biochimica et Biophysica Acta, 446(1), 1-9. Bradshaw, M.J., Saviola, A.J., Fesler, E., and Mackessy, S.P. (2016). Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines. Cytotechnology 68, 687-700. Branch, W. R. (1979). The venomous snakes of southern Africa. Part 2. Elapidae and Hydrophidae. Snake. 11, 199-225. Bureau of Medicine and Surgery, Department of the Navy, United States. (2013). Venomous Snakes of the World: A Manual for Use by U. S. Amphibious Forces. Skyhorse. 217, ISBN 978-1-62087-623-7. Chaisakul, J., Parkington, H.C., Isbister, G.K., Konstantakopoulos, N., and Hodgson, W.C. (2013). Differential myotoxic and cytotoxic activities of pre-synaptic neurotoxins from Papuan taipan (Oxyuranus scutellatus) and Irian Jayan death adder (Acanthophis rugosus) venoms. Basic Clin Pharmacol Toxicol 112, 325-334. Chanda, C., Sarkar, A., Sistla, S., and Chakrabarty, D. (2013). Anti-platelet activity of a three-finger toxin (3FTx) from Indian monocled cobra (Naja kaouthia) venom. Biochem Biophys Res Commun 441, 550-554. Chang, K.P., Lai, C.S., Lin, S.D. (2007). Management of poisonous snake bites in southern Taiwan, Kaohsiung. J. Med. Sci. 23(10), 511–518. Chen, T.S., Chung, F.Y., Tjong, S.C., Goh, K.S., Huang, W.N., Chien, K.Y. et al. (2005). Structural difference between group I and group II cobra cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-proline conformation on three-fingered toxins. Biochemistry. 44, 7414–7426. Chew, K.S., Khor, H.W., Ahmad, R., Rahman, N.H. (2011). A five-year retrospective review of snakebite patients admitted to a tertiary university hospital in Malaysia. Int. J. Emerg. Med. 4, 41. Chien, K.Y., Chiang, C.M., Hseu, Y.C., Vyas, A.A., Rule, G.S., and Wu, W. (1994). Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. Journal of Biological Chemistry 269, 14473-14483. Cory, S., Adams, J.M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2, 647–656. Curti, B., Massey, V., Zmudka, M. (1968). Inactivation of snake venom L-amino acid oxidase by freezing. J Biol Chem. 243, 2306–2314. Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., Mukherjee, C., Shi, Y., Gélinas, C., Fan,.Y., Nelson, D.A., Jin, S., White, E. (2000). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 10, 51-64. Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G.D., Mitchison, T.J., Moskowitz, M.A., Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 1, 112-119. Dhananjaya, B.L., CJ, D.S. (2010). An overview on nucleases (DNase, RNase, and phosphodiesterase) in snake venoms. Biochemistry. 75(1), 1–6. Doley, R., Kini, R.M. (2009). Protein complexes in snake venom, Cell Mol. Life Sci. 66(17), 2851-2871. Du, X.Y., Clemetson, K.J. (2002). Snake venom L-amino acid oxidases. Toxicon. 40, 659–665. Dubovskii, P.V., Konshina, A.G., Efremov, R.G. (2013). Cobra cardiotoxins: membrane interactions and pharmacological potential. Curr. Med. Chem. 21, 270-287. Edinger, A.L. and Thompson, C.B. (2004). Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663-669. Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L. and Henson, P.M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immun. 148, 2207–2216. Feofanov, Alexei V., Sharonov, George V., Astapova, Maria V., Rodionov, Dmitriy I., Utkin, Yuriy N., and Arseniev, Alexander S. (2005). Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage. Biochemical Journal 390, 11-18. Festjens, N., Vanden Berghe, T., Vandenabeele, P. (2006). Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta. 1757, 1371-1387. Fletcher, J.E., Jiang, M.S. (1993). Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittin. Toxicon. 31(6), 669–695. Fry, B.G. (2005). From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 15, 403–420. Fry, B.G., Scheib, H., van der Weerd, L., Young, B., McNaughtan, J., Ramjan, S.F.R. et al. (2008). Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol. Cell. Proteomics. 7, 215–246. Fulda, S., Gorman, A.M., Hori, O., Samali, A. (2010). Cellular stress responses: cell survival and cell death, Int. J. Cell Biol. 10, 1–23. Gasanov, S. E., Dagda, R. K. and Rael, E. D. (2014). Snake Venom Cytotoxins, Phospholipase A2s, and Zn2+-dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance. Journal of Clinical Toxicology, 4(1), 1000181–. Gasanov, S.E., Alsarraj, M.A., Gasanov, N.E., Rael, E.D. (1997). Cobra venom cytotoxin free of phospholipase A2 and its effect on model membranes and T leukemia cells. J. Membr. Biol. 155, 133-142. Golstein, P., and Kroemer, G. (2007). Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci. 32, 37–43. Gopalakrishnakone, P., Cruz, Lourdes J., Luo, Sulan (2017). Toxins and Drug Discovery. Springer. ISBN 978-94-007-6452-1. Gopalakrishnakone, P., Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R. (2017). Snake venoms. Springer. ISBN 978-94-007-6452-1. Green, D.R., lambi, F. (2015). Cell death signaling, Cold Spring Harb. Perspect. Biol., 7, a006080. Gutierrez, J.M. (2016). Understanding and confronting snakebite envenoming: The harvest of cooperation. Toxicon 109, 51-62. Gutierrez, J.M., and Lomonte, B. (2013). Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon 62, 27-39. Gutierrez, J.M., Warrell, D.A., Williams, D.J., Jensen, S., Brown, N., Calvete, J.J., et al. (2013). The need for full integration of snakebite envenoming within a global strategy to combat the neglected tropical diseases: the way forward. PLoS Negl Trop Dis. 7, e2162. Harrison, R.A., Hargreaves, A., Wagstaff, S.C., Faragher, B., Lalloo, D.G. (2009). Snake envenoming: a disease of poverty. PLoS Negl Trop Dis. 3, e569. Harvey, A.L. (1990). Cytolytic toxins. Handook of Toxicology. Marcel Dekker Inc, New York, USA. 66. Harvey, A.L. (1991). Cardiotoxins from snake venoms. In: Keeler RF, Tu AT (eds.) Handbook of Natural Toxins. Marcel Dekker, New York, USA. 106. Hegde, R.P., Rajagopalan, N., Doley, R., Kini, R.M. (2009). Snake venom three-finger toxins. In: Mackessy SP, edtior. Handbook of venoms and toxins of reptiles. Boca Raton, Taylor & Fracis Group/CRC Press. 287–301. Hempel, B.F., Damm, M., G??men, B., Karis, M., Oguz, M.A., Nalbantsoy, A., and Süssmuth, R.D. (2018). Comparative Venomics of the Vipera ammodytes transcaucasiana and Vipera ammodytes montandoni from Turkey Provides Insights into Kinship. Toxins (Basel) 10. Heus, F., Vonk, F., Otvos, R.A., Bruyneel, B., Smit, A.B., Lingeman, H., Richardson, M., Niessen, W.M., Kool, J. (2013). An efficient analytical platform for on-line microfluidic profiling of neuroactive snake venoms towards nicotinic receptor affinity. Toxicon. 61, 112–124. Hokama, Y., Iwanaga, S., Tatsuki, T., Suzuki, T. (1976). Snake venom proteinase inhibitors. III. Isolation of five polypeptide inhibitors from the venoms of Hemachatus haemachatus (Ringhal's corbra) and Naja nivea (Cape cobra) and the complete amino acid sequences of two of them. J Biochem. 79(3), 559-578. Hotchkiss, R.S., Strasser, A., McDunn, J.E., Swanson, P.E. (2009). Cell death. N Engl J Med., 361,1570–1583. Huang, H.W., Liu, B.S., Chien, K.Y., Chiang, L.C., Huang, S.Y., Sung, W.C., and Wu, W.G. (2015). Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics 128, 92-104. Hung, D.Z., Liau, M.Y., Lin-Shiau, S.Y. (2003). The clinical significance of venom detection in patients of cobra snakebite. Toxicon. 41(4), 409–415. Ismail, M., al-Bekairi, A.M., el-Bedaiwy, A.M., Abd-el Salam, M.A. (1993). The ocular effects of spitting cobras II. Evidence that cardiotoxins are responsible for the corneal opacification syndrome. J Toxicol Clin Toxicol. 31(1), 45–62. Jayaraman, G., Kumar, T.K., Tsai, C.C., Srisailam, S., Chou, S.H., Ho, C.L., and Yu, C. (2000). Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)--identification of structural features important for the lethal action of snake venom cardiotoxins. Protein Sci 9, 637-646. Jin, Z., El-Deiry, W.S. (2005) Overview of cell death signaling pathways, Cancer Biol. Ther., 4, 139–163. Joubert, F.J., Taljaard, N. (1980). Snake venoms. The amino acid sequences of two Melanoleuca-type toxins. Hoppe-Seyler's Z. Physiol. Chem. 361, 425-436. Kam, P.C.A., Ferch, N.I. (2000). Apoptosis: mechanisms and clinical implications. Anaesthesia, 55, 1081–1093. Kang, T.S., Georgieva, D., Genov, N., Murakami, M.T., Sinha, M., Kumar, R.P., Kaur, P., Kumar, S., Dey, S., Sharma, S., Vrielink, A., Betzel, C., Takeda, S., Arni, R.K., Singh, T.P., Kini, R.M. (2011). Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 278(23), 4544–4576. Kasturiratne, A., Wickremasinghe, A.R., de Silva, N., Gunawardena, N.K., Pathmeswaran, A., et al. (2008). The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLoS Med. 5, 1591–1604. Kearney, E.B., Singer, T.P. (1951). The L-amino acid oxidases of snake venom. V. Mechanism of the reversible inactivation. Arch Biochem. 33, 414–426. Kini, R.M. (2003). Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon. 42, 827-840. Kini, R.M. (2006). Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J 397, 377-387. Kini, R.M., and Doley, R. (2010). Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 56, 855-867. Kini, R.M., Evans, H.J. (1989). A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon. 27, 613–635. Konshina, A.G., Boldyrev, I.A., Utkin, Y.N., Omel’kov, A.V., Efremov, R.G. (2011). Snake cytotoxins bind to membranes via interactions with phosphatidylserine head groups of lipids. PLoS One. 6, e19064. Konshina, A.G., Boldyrev, I.A., Utkin, Y.N., Omel'kov, A.V., and Efremov, R.G. (2011). Snake cytotoxins bind to membranes via interactions with phosphatidylserine head groups of lipids. PLoS One 6, e19064. Konshina, A.G., Dubovskii, P.V., Efremov, R.G. (2012). Structure and dynamics of cardiotoxins. Curr. Protein Pept. Sci. 13, 570-584. Kroemer, G., El-Deiry, W.S., Golstein, P., Peter, M.E., Vaux, D., Vandenabeele, P., Zhivotovsky, B., Blagosklonny, M.V., Malorni, W., Knight, R.A., Piacentini, M., Nagata, S., Melino, G. (2005). Nomenclature Committee on Cell Death. Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ. 12, 1463-1467. Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., El-Deiry, W.S., Golstein, Green, D.R., et al. (2008). Cell Death Differ., in press. 10.1038, cdd.2008.150 Kularatne, S.A., Budagoda, B.D., Gawarammana, I.B., Kularatne, W.K. (2009). Epidemiology, clinical profile and management issues of cobra (Naja naja) bites in Sri Lanka: first authenticated case series. Trans. R. Soc. Trop. Med. Hyg. 103(9), 924–930. Kumar, T.K., Jayaraman, G., Lee, C.S., Arunkumar, A.I., Sivaraman, T. et al. (1997). Snake venom cardiotoxins-structure, dynamics, function and folding. J. Biomol Struct. Dyn. 15, 431-463. Laustsen, A.H., Gutiérrez, J.M., Lohse, B., Rasmussen, A.R., Fernández, J., Milbo, C. et al. (2015). Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon. 99, 23–35. Leibowitz, B., Yu, J. (2010). Mitochondrial signaling in cell death via the Bcl-2 family, Cancer Biol. Ther., 9, 417–422. Liu, C.C, Linb, C.C., Hsiaoc, Y.C., Wangb, P.J., Yu, J.S. (2018). Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. Journal of Proteomics. 06, 003. Lomonte, B., Rangel, J. (2012). Snake venom Lys49 myotoxins: From phospholipases A2 to non-enzymatic membrane disruptors. Toxicon. 60, 520–530. Mackessy, S.P. (2009). The field of reptile toxinology. Snakes, lizards, and their venoms. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton, FL: Taylor and Francis Group. CRC Press. 3–23 Mahmood, Z., Shukla, Y. (2010). Death receptors: targets for cancer therapy. Exp. Cell Res., 316, 887–899. Mao, Y.C., Liu, P.Y., Chiang, L.C., Lai, C.S., Lai, K.L., Ho, C.H., Wang, T.H., and Yang, C.C. (2018). Naja atra snakebite in Taiwan. Clin Toxicol (Phila) 56, 273-280. Markland, Jr. F.S., Swenson, S. (2013). Snake venom metalloproteinases. Toxicon. 62, 3–18. Martinou, J.C., Youle, R.J. (2011). Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell, 21, 92–101. Mohapatra, B., Warrell, D.A., Suraweera, W., Bhatia, P., Dhingra, N., Jotkar, R.M., et al. (2011). Snakebite mortality in India: a nationally representative mortality survey. PLoS Negl. Trop Dis. 5, e1018. Muller, GJ., Modler, H., Wium, CA., Veale, DJH., Marks, C J. (2012) Snake bite in southern Africa: diagnosis and management. CME October 2012 Vol. 30 No. 10. Nalbantsoy, A., Hempel, B.F., Petras, D., Heiss, P., Gocmen, B., Igci, N., Yildiz, M.Z., and Sussmuth, R.D. (2017). Combined venom profiling and cytotoxicity screening of the Radde's mountain viper (Montivipera raddei) and Mount Bulgar Viper (Montivipera bulgardaghica) with potent cytotoxicity against human A549 lung carcinoma cells. Toxicon 135, 71-83. Nawarak, J., Sinchaikul, S., Wu, C.Y., Liau, M.Y., Phutrakul, S., Chen, S.T. (2003). Proteomics of snake venoms from Elapidae and Viperidae families by multidimensional chromatographic methods. Electrophoresis. 24(16), 2838–2854. Orrenius, S., Gogvadze, V., Zhivotovsky, B. (2007). Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol., 47, 143–183. Orrenius, S., Gogvadze, V., Zhivotovsky, B. (2015). Calcium and mitochondria in the regulation of cell death, Biochem. Biophys. Res. Commun., 460, 72–81. O'Shea, M. (2008). Venomous Snakes of the World. New Holland. 74. ISBN 978-1-84773-086-2. Osipov, A.V., Kasheverov, I.E., Makarova, Y.V., Starkov, V.G., Vorontsova, O.V., Ziganshin, R., Andreeva, T.V., Serebryakova, M.V., Benoit, A., Hogg, R.C., et al. (2008). Naturally occurring disulfide-bound dimers of three-fingered toxins: a paradigm for biological activity diversification. J Biol Chem 283, 14571-14580. Paoli, M., Rigoni, M., Koster, G., Rossetto, O., Montecucco, C., and Postle, A.D. (2009). Mass spectrometry analysis of the phospholipase A(2) activity of snake pre-synaptic neurotoxins in cultured neurons. J Neurochem 111, 737-744. Petan, T., Krizaj, I., and Pungercar, J. (2007). Restoration of enzymatic activity in a Ser-49 phospholipase A2 homologue decreases its Ca(2+)-independent membrane-damaging activity and increases its toxicity. Biochemistry 46, 12795-12809. Prindull, G. (1995). Apoptosis in the embryo and tumorigenesis. Eur J Cancer, 31a, 116-123. Pungerčar, J., Križaj, I. (2007). Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2. Toxicon. 50(7), 871–892. Reid, H.A., (1964). Cobra-Bites. Br. Med. J. 2(5408), 540–545. Rigoni, M., Pizzo, P., Schiavo, G., Weston, A.E., Zatti, G., Caccin, P., Rossetto, O., Pozzan, T., and Montecucco, C. (2007). Calcium Influx and Mitochondrial Alterations at Synapses Exposed to Snake Neurotoxins or Their Phospholipid Hydrolysis Products. Journal of Biological Chemistry 282, 11238-11245. Rodrigues, R.S., Izidoro, L.F., de Oliveira, Jr. R.J. (2009). Sampaio SV, Soares AM, Rodrigues VM. Protein Pept Lett. 16(8), 894–898. Rodrigues, R.S., Izidoro, L.F., de Oliveira, R.J., Jr., Sampaio, S.V., Soares, A.M., and Rodrigues, V.M. (2009). Snake venom phospholipases A2: a new class of antitumor agents. Protein Pept Lett 16, 894-898. Sajevic T., Leonardi A., Križaj I. (2011). Haemostatically active proteins in snake venoms. Toxicon. 57, 627–645. Savill, J., Fadok, V. (2000). Corpse clearance defines the meaning of cell death. Nature, 407, 784-788. Scott, D.L., White, S.P., Otwinowski, Z., Yuan, W., Gelb, M.H., and Sigler, P.B. (1990). Interfacial catalysis: the mechanism of phospholipase A2. Science 250, 1541-1546. Sergey, Y., Proskuryakov, Anatoli, G. Konoplyannikov, and Vladimir, L. Gabai. Necrosis: a specific form of programmed cell death?. Experimental Cell Research. 283(2003), 1–16. Silva, M.T. (2010). Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett. 584(22), 4491-4499. Susan, L., Fink and Brad, T. Cookson. (2005). Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells. Infection and immunity, 1907–1916. Tan, C.H., Tan, K.Y., Fung, S.Y., and Tan, N.H. (2015a). Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah). BMC Genomics 16, 687. Tan, K.Y., Tan, C.H., Fung, S.Y., and Tan, N.H. (2015b). Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics 120, 105-125. Tan, N.H., Armugam, A. (1990). In vivo interactions between neurotoxin, cardiotoxin and phospholipases A2 isolated from Malayan cobra (NajaNaja sputatrix) venom. Toxicon. 28(10), 1193-1198. Tan, N.H., Choy, S.K. (1993). The edema-inducing activity of Ophiophagus hannah (King Cobra) venom L-amino acid oxidase. Kuala Lumpur: Malaysian Society on Toxinology. 268–273. Tasoulis, T., and Isbister, G.K. (2017). A Review and Database of Snake Venom Proteomes. Toxins (Basel) 9. Trinh, X.K., TrinH, X.A., Le, K.Q., Nguyen, B.P., Thai, D.T., Trinh, X.L., Pham, M.H., Warrell, D.A. et al. (2013). Venomous Snake of Medical Importance and Snake Bites Management in Vietnam. 2nd Annual Scientific Conference in Ho Chi Minh City, Vietnam (Oral presentation). Tsai, Y.H., Hsu, W.H., Huang, K.C., Yu, P.A., Chen, C.L., and Kuo, L.T. (2017). Necrotizing fasciitis following venomous snakebites in a tertiary hospital of southwest Taiwan. Int J Infect Dis 63, 30-36. Tu, A.T. (1977). Venoms: chemistry and molecular biology. New York: Wiley. Udaya, K., Ranawaka, David G., Lalloo, H., Janaka de Silva. (2013). Neurotoxicity in Snakebite—The Limits of Our Knowledge. PLoS Negl. Trop Dis. 7(10), e2302 Van den Berg, C.W., Aerts, P.C., Van Dijk, H. (1991). In vivo anti-complementary activities of the cobra venom factors from Naja naja and Naja haje. J. Immunol. Methods. 136(2), 287-94. Warrell, D.A. (1995). Clinical toxicology of snakebite in Africa and the Middle East /Arabian peninsula. In: Handbook of Clinical Toxicology of Animal Venoms and Wellner, D. (1966). Evidence for conformational changes in L-amino acid oxidase associated with reversible inactivation. Biochemistry. 5, 1585–1591. Williams, D., Gutie´rrez, J.M., Harrison, R., Warrell, D.A., White, J., Winkel, K.D., et al. (2010). The Global Snake Bite Initiative: an antidote for snake bite. Lancet. 375(9708), 89–91. Wong, K.Y., Tan, C.H., Tan, K.Y., Quraishi, N.H., Tan, N.H. (2018). Elucidating the biogeographical variation of the venom of Naja naja spectacled cobra) from Pakistan through a venom-decomplexing proteomic study. J. of Proteomics. 175, 156–173. Wongtongkam, N., Wilde, H., Sitthi-Amorn, C., Ratanabanangkoon, K, (2005). A study of Thai cobra (Naja kaouthia) bites in Thailand. Mil. Med. 170, 336–341. Xiao, H., Pan, H., Liao, K., Yang, M., & Huang, C. (2017). Snake Venom PLA2, a Promising Target for Broad-Spectrum Antivenom Drug Development. BioMed Research International, 2017, 6592820. Yen, T.Y., Joshi, R.K., Yan, H., Seto, N.O., Palcic, M.M., and Macher, B.A. (2000). Characterization of cysteine residues and disulfide bonds in proteins by liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectrom 35, 990-1002. Zong, W.X. and Thompson, C.B. (2006). Necrotic death as a cell fate. Genes Dev. 20, 1-15.
|