帳號:guest(3.145.175.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張文年
作者(外文):Truong, Van Nam
論文名稱(中文):三種眼鏡蛇毒的毒素體及細胞毒性的比較研究
論文名稱(外文):Venomics and Cell Toxicity Study on Cobra Venoms from Naja atra, Naja kaouthia and Naja nivea
指導教授(中文):吳文桂
指導教授(外文):WU, WEN-GUEY
口試委員(中文):簡昆鎰
吳柏龍
口試委員(外文):Chien, Kun-Yi
Wu, Po-Long
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:105080423
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:74
中文關鍵詞:種眼鏡蛇毒毒素體細胞毒性
外文關鍵詞:VenomicsCell ToxicityNaja atraNaja kaouthiaNaja nivea
相關次數:
  • 推薦推薦:0
  • 點閱點閱:16
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
通常遭到眼鏡蛇咬傷的病患在臨床上會表現出系統性神經症狀,例如肌肉無力或呼吸衰竭,還會有局部組織的損傷,例如組織潰爛或嚴重的壞死性筋膜炎。有趣的是糟糕非洲眼鏡蛇N. nivea咬傷的病患,主要表現出系統性神經症狀,沒有明顯的組織損傷,而遭到亞洲眼鏡蛇N. atra 與N. kaothia咬傷的病患,卻沒有明顯的系統性神經症狀,反而有顯著的組織損傷。為了瞭解造成這樣特別影響的可能機制,本實驗室針對N. atra、N. kaouthia和N. nivea的蛇毒進行蛋白質體學的差異性分析研究,並且探討其差異性與細胞毒性的關連性。
根據液相層析、膠體電泳以及質譜分析等方法,可以確認N. atra、N. kaouthia和N. nivea的蛇毒成分主要是由神經毒素(neurotoxins)、心臟毒素(cardiotoxins or cytotoxins)以及磷脂酶A2 (phospholipase A2)所組成,表現量各有不同。相較於兩個在臨床上表現出嚴重組織壞死的亞洲眼鏡蛇,非洲眼鏡蛇N. nivea毒液中磷脂酶A2的含量相對很少,因此我們假設磷脂酶A2可能透過造成細胞死亡,進一步增加局部組織壞死的程度。
我們透過細胞株HEK-293進行細胞毒性測試,來探討磷脂酶A2是否與組織壞死有相關性。研究的結果顯示N. atra、N. kaouthia和N. nivea毒液的IC50分別為~12.2,13.5和17.4μg/ ml。 進一步分析可以發現N. atra、N. kaouthia和N. nivea毒液都可以誘導細胞凋亡(apoptosis)和細胞壞死(necrosis),而細胞凋亡(apoptosis)是主要的途徑。 從結果來看,我們可以發現磷脂酶A2可能實際參與了由眼鏡蛇咬傷所引起的局部組織壞死,而詳細的機制仍需要進一步的探討。
The victims of cobra snake bite usually exhibit clinical symptoms with a systematic neurological abnormality such as muscle weakness/respiratory arrest and/or local tissue damages such as toe gangrene/severe necrotizing fasciitis. Interestingly, African cobra of N. nivea produces mainly neurological effect without significant tissue damage and Asian cobra of N. atra and N. kaouthia produce mainly local tissue damage with few neurological symptoms. In order to understand possible mechanisms responsible for their distinct effect, we perform proteomic investigation of cobra venoms from N. atra, N. kaouthia and N. nivea and correlate the proteomic profile with the cell toxicity assay.
Based on the reverse-phase HPLC, SDS-PAGE and mass spectrometry analysis, all three cobra venoms consist of high molecular weight enzymes, PLA2s (phospholipase A2) excepting N. nivea, and three fingers toxin of NTXs (neurotoxins) and CTXs (cardiotoxins or cytotoxins), but with different degree of abundance. Interestingly, we cannot find out any evidence about the presence of PLA2 in N. nivea venom by mass spectrometry identification compared to the other two Asian venoms exhibiting mainly necrotic effect. We therefore hypothesize that the PLA2 might play a role in cell toxicity contributing further enhancing the necrotic cell death in the bitten tissue area.
Venom-induced cell toxicity of HEK-293 is then monitored by MTT methods to shed light on the effect of venom compositional change. The IC50 for the venom from N. atra, N. kaouthia and N. nivea are found to be ~ 12.2, 13.5 and 17.4 g/ml, respectively. Interestingly, all N. atra, N. kaouthia and N. nivea venom induced both apoptotic and necrotic cell death, of which apoptosis is the major cell death pathway. Remarkably, our present study revealed that PLA2 is one of the key component responsible for elevated cellular toxicity induced by the crude venom of N. atra, N. kaouthia as compared to that of N. nivea. Accordingly, the involvement of PLA2 in the clinical symptom of local tissue necrosis caused by cobra snake bite are proposed as a potential future avenue of research.
ABBREVIATIONS 1
Chapter 1 INTRODUCTION 3
1.1. Overview of cobra-snake venoms: Definition, compositions, and characteristics 3
1.1.1. Definition 3
1.1.2. Compositions 3
1.1.3. Characteristics 4
1.2. Taiwanese Naja atra (NA) 8
1.3. Vietnamese Naja kaouthia 9
1.4. Southern Africa Naja nivea 10
1.5. Pathways of cell death: Apoptosis, and necrosis 11
1.5.1. Apoptosis 11
1.5.2. Necrosis 13
Chapter 2 MATERIALS AND METHODS 15
2.1. Chemical reagents 15
2.2. Venom samples 15
2.3. C18 reverse-phase HPLC fractionation 15
2.4. Venom quantification and SDS-PAGE analysis 16
2.5. Protein digestion and identification 16
2.6. PLA2 activity 17
2.7. Cell culture 17
2.8. Cell viability assay 17
2.9. Determination of half maximal inhibitory concentration (IC50) 18
2.10. Morphological studies 18
2.11. Cell death assay (Annexin V-FITC/PI double staining for apoptosis and necrosis detection by flow cytometry assay) 18
2.12. Statistical analysis 18
Chapter 3 RESULTS 20
3.1. Venomic characterization of three cobra venoms from Naja atra (Taiwan), Naja kaouthia (Vietnam) and Naja nivea (Southern Africa) species 20
3.2. Comparative venomics of three cobra venoms from Naja atra (Taiwan), Naja kaouthia (Vietnam) and Naja nivea (Southern Africa) species 23
3.2.1. Comparison of 3FTX composition 23
3.2.2. Phospholipases A2 comparison 25
3.2.3. Comparison of other components 26
3.3. Comparison of enzymatic activity of PLA2 of three cobra crude venoms 26
3.4. Comparison of cell viability and morphological changes induced by three kinds of cobra crude venoms in human embryonic kidney 293 cells 27
3.5. Comparison of cell death pathways induced by three kinds of cobra crude venoms in human embryonic kidney 293 cells 28
3.6. Comparison of the functional roles of PLA2, PDE and 5-NT in cell toxicity induced by three cobra crude venoms in human embryonic kidney 293 cells 29
Chapter 4 DISCUSSION 31
REFERENCES 34

Aird, S.D. (2002). Ophidian envenomation strategies and the role of purines, Toxicon. 40(4), 335–393.
Araki, S., Ishida, T., Yamamoto, T., Kaji, K., Hayashi, H. (1993). Induction of apoptosis by hemorrhagic snake venom in vascular endothelial cells. Biochem Biophys Res Commun. 190, 148–53.
Arnold, C. (2016). Vipers, mambas and taipans: the escalating health crisis over snakebites. Nature. 537 (7618), 26–8.
Balali Bahadorani, M. (2016). Cytotoxic Effect of Snake (Echis Carinatus) Venom on Human Embryonic Kidney Cells (HEK 293), Vol 3.
Beckerbauer, L., Tepe, J.J., Eastman, R.A., Mixter, P.F., Williams, R.M., and Reeves, R. (2002). Differential effects of FR900482 and FK317 on apoptosis, IL-2 gene expression, and induction of vascular leak syndrome. Chem Biol 9, 427-441.
Blaylock, R.S., Lichtman, A.R., and Potgieter, P.D. (1985). Clinical manifestations of Cape cobra (Naja nivea) bites. A report of 2 cases. S Afr Med J 68, 342-344.
Boldrini-França, J., Corrêa-Netto, C., Silva, M.M, Rodrigues, R.S., De La Torre, P., Pérez, A., Soares, A.M., Zingali, R.B., Nogueira, R.A., Rodrigues, V.M., Sanz, L., Calvete, J.J. (2010). Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: assessment of geographic variation and its implication on snakebite management. J Proteomics. 73(9), 1758-1776.
Botes, D.P. (1971). Snake venom toxins. The amino acid sequences of toxins and from Naja nivea venom and the disulfide bonds of toxin. J. Biol. Chem. 246(23), 7383-7891.
Botes, D.P., Strydom, D.J., Anderson, C.G., Christensen, P.A. (1971). Snake venom toxins. Purification and properties of three toxins from Naja nivea (Linnaeus) (Cape cobra) venom and the amino acid sequence of toxin delta. J. Biol. Chem. 246(10), 3132-3139.
Botes, D.P., Viljoen, C.C. (1976). The amino acid sequence of three non-curarimimetic toxins from Naja nivea venom. Biochimica et Biophysica Acta, 446(1), 1-9.
Bradshaw, M.J., Saviola, A.J., Fesler, E., and Mackessy, S.P. (2016). Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines. Cytotechnology 68, 687-700.
Branch, W. R. (1979). The venomous snakes of southern Africa. Part 2. Elapidae and Hydrophidae. Snake. 11, 199-225.
Bureau of Medicine and Surgery, Department of the Navy, United States. (2013). Venomous Snakes of the World: A Manual for Use by U. S. Amphibious Forces. Skyhorse. 217, ISBN 978-1-62087-623-7.
Chaisakul, J., Parkington, H.C., Isbister, G.K., Konstantakopoulos, N., and Hodgson, W.C. (2013). Differential myotoxic and cytotoxic activities of pre-synaptic neurotoxins from Papuan taipan (Oxyuranus scutellatus) and Irian Jayan death adder (Acanthophis rugosus) venoms. Basic Clin Pharmacol Toxicol 112, 325-334.
Chanda, C., Sarkar, A., Sistla, S., and Chakrabarty, D. (2013). Anti-platelet activity of a three-finger toxin (3FTx) from Indian monocled cobra (Naja kaouthia) venom. Biochem Biophys Res Commun 441, 550-554.
Chang, K.P., Lai, C.S., Lin, S.D. (2007). Management of poisonous snake bites in southern Taiwan, Kaohsiung. J. Med. Sci. 23(10), 511–518.
Chen, T.S., Chung, F.Y., Tjong, S.C., Goh, K.S., Huang, W.N., Chien, K.Y. et al. (2005). Structural difference between group I and group II cobra cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-proline conformation on three-fingered toxins. Biochemistry. 44, 7414–7426.
Chew, K.S., Khor, H.W., Ahmad, R., Rahman, N.H. (2011). A five-year retrospective review of snakebite patients admitted to a tertiary university hospital in Malaysia. Int. J. Emerg. Med. 4, 41.
Chien, K.Y., Chiang, C.M., Hseu, Y.C., Vyas, A.A., Rule, G.S., and Wu, W. (1994). Two distinct types of cardiotoxin as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipid dispersions. Journal of Biological Chemistry 269, 14473-14483.
Cory, S., Adams, J.M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat. Rev. Cancer, 2, 647–656.
Curti, B., Massey, V., Zmudka, M. (1968). Inactivation of snake venom L-amino acid oxidase by freezing. J Biol Chem. 243, 2306–2314.
Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., Mukherjee, C., Shi, Y., Gélinas, C., Fan,.Y., Nelson, D.A., Jin, S., White, E. (2000). Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 10, 51-64.
Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G.D., Mitchison, T.J., Moskowitz, M.A., Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 1, 112-119.
Dhananjaya, B.L., CJ, D.S. (2010). An overview on nucleases (DNase, RNase, and phosphodiesterase) in snake venoms. Biochemistry. 75(1), 1–6.
Doley, R., Kini, R.M. (2009). Protein complexes in snake venom, Cell Mol. Life Sci. 66(17), 2851-2871.
Du, X.Y., Clemetson, K.J. (2002). Snake venom L-amino acid oxidases. Toxicon. 40, 659–665.
Dubovskii, P.V., Konshina, A.G., Efremov, R.G. (2013). Cobra cardiotoxins: membrane interactions and pharmacological potential. Curr. Med. Chem. 21, 270-287.
Edinger, A.L. and Thompson, C.B. (2004). Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663-669.
Fadok, V.A., Voelker, D.R., Campbell, P.A., Cohen, J.J., Bratton, D.L. and Henson, P.M. (1992). Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J. Immun. 148, 2207–2216.
Feofanov, Alexei V., Sharonov, George V., Astapova, Maria V., Rodionov, Dmitriy I., Utkin, Yuriy N., and Arseniev, Alexander S. (2005). Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage. Biochemical Journal 390, 11-18.
Festjens, N., Vanden Berghe, T., Vandenabeele, P. (2006). Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta. 1757, 1371-1387.
Fletcher, J.E., Jiang, M.S. (1993). Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittin. Toxicon. 31(6), 669–695.
Fry, B.G. (2005). From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 15, 403–420.
Fry, B.G., Scheib, H., van der Weerd, L., Young, B., McNaughtan, J., Ramjan, S.F.R. et al. (2008). Evolution of an arsenal: structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Mol. Cell. Proteomics. 7, 215–246.
Fulda, S., Gorman, A.M., Hori, O., Samali, A. (2010). Cellular stress responses: cell survival and cell death, Int. J. Cell Biol. 10, 1–23.
Gasanov, S. E., Dagda, R. K. and Rael, E. D. (2014). Snake Venom Cytotoxins, Phospholipase A2s, and Zn2+-dependent Metalloproteinases: Mechanisms of Action and Pharmacological Relevance. Journal of Clinical Toxicology, 4(1), 1000181–.
Gasanov, S.E., Alsarraj, M.A., Gasanov, N.E., Rael, E.D. (1997). Cobra venom cytotoxin free of phospholipase A2 and its effect on model membranes and T leukemia cells. J. Membr. Biol. 155, 133-142.
Golstein, P., and Kroemer, G. (2007). Cell death by necrosis: towards a molecular definition. Trends Biochem. Sci. 32, 37–43.
Gopalakrishnakone, P., Cruz, Lourdes J., Luo, Sulan (2017). Toxins and Drug Discovery. Springer. ISBN 978-94-007-6452-1.
Gopalakrishnakone, P., Inagaki, H., Vogel, C.-W., Mukherjee, A.K., Rahmy, T.R. (2017). Snake venoms. Springer. ISBN 978-94-007-6452-1.
Green, D.R., lambi, F. (2015). Cell death signaling, Cold Spring Harb. Perspect. Biol., 7, a006080.
Gutierrez, J.M. (2016). Understanding and confronting snakebite envenoming: The harvest of cooperation. Toxicon 109, 51-62.
Gutierrez, J.M., and Lomonte, B. (2013). Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon 62, 27-39.
Gutierrez, J.M., Warrell, D.A., Williams, D.J., Jensen, S., Brown, N., Calvete, J.J., et al. (2013). The need for full integration of snakebite envenoming within a global strategy to combat the neglected tropical diseases: the way forward. PLoS Negl Trop Dis. 7, e2162.
Harrison, R.A., Hargreaves, A., Wagstaff, S.C., Faragher, B., Lalloo, D.G. (2009). Snake envenoming: a disease of poverty. PLoS Negl Trop Dis. 3, e569.
Harvey, A.L. (1990). Cytolytic toxins. Handook of Toxicology. Marcel Dekker Inc, New York, USA. 66.
Harvey, A.L. (1991). Cardiotoxins from snake venoms. In: Keeler RF, Tu AT (eds.) Handbook of Natural Toxins. Marcel Dekker, New York, USA. 106.
Hegde, R.P., Rajagopalan, N., Doley, R., Kini, R.M. (2009). Snake venom three-finger toxins. In: Mackessy SP, edtior. Handbook of venoms and toxins of reptiles. Boca Raton, Taylor & Fracis Group/CRC Press. 287–301.
Hempel, B.F., Damm, M., G??men, B., Karis, M., Oguz, M.A., Nalbantsoy, A., and Süssmuth, R.D. (2018). Comparative Venomics of the Vipera ammodytes transcaucasiana and Vipera ammodytes montandoni from Turkey Provides Insights into Kinship. Toxins (Basel) 10.
Heus, F., Vonk, F., Otvos, R.A., Bruyneel, B., Smit, A.B., Lingeman, H., Richardson, M., Niessen, W.M., Kool, J. (2013). An efficient analytical platform for on-line microfluidic profiling of neuroactive snake venoms towards nicotinic receptor affinity. Toxicon. 61, 112–124.
Hokama, Y., Iwanaga, S., Tatsuki, T., Suzuki, T. (1976). Snake venom proteinase inhibitors. III. Isolation of five polypeptide inhibitors from the venoms of Hemachatus haemachatus (Ringhal's corbra) and Naja nivea (Cape cobra) and the complete amino acid sequences of two of them. J Biochem. 79(3), 559-578.
Hotchkiss, R.S., Strasser, A., McDunn, J.E., Swanson, P.E. (2009). Cell death. N Engl J Med., 361,1570–1583.
Huang, H.W., Liu, B.S., Chien, K.Y., Chiang, L.C., Huang, S.Y., Sung, W.C., and Wu, W.G. (2015). Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics 128, 92-104.
Hung, D.Z., Liau, M.Y., Lin-Shiau, S.Y. (2003). The clinical significance of venom detection in patients of cobra snakebite. Toxicon. 41(4), 409–415.
Ismail, M., al-Bekairi, A.M., el-Bedaiwy, A.M., Abd-el Salam, M.A. (1993). The ocular effects of spitting cobras II. Evidence that cardiotoxins are responsible for the corneal opacification syndrome. J Toxicol Clin Toxicol. 31(1), 45–62.
Jayaraman, G., Kumar, T.K., Tsai, C.C., Srisailam, S., Chou, S.H., Ho, C.L., and Yu, C. (2000). Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)--identification of structural features important for the lethal action of snake venom cardiotoxins. Protein Sci 9, 637-646.
Jin, Z., El-Deiry, W.S. (2005) Overview of cell death signaling pathways, Cancer Biol. Ther., 4, 139–163.
Joubert, F.J., Taljaard, N. (1980). Snake venoms. The amino acid sequences of two Melanoleuca-type toxins. Hoppe-Seyler's Z. Physiol. Chem. 361, 425-436.
Kam, P.C.A., Ferch, N.I. (2000). Apoptosis: mechanisms and clinical implications. Anaesthesia, 55, 1081–1093.
Kang, T.S., Georgieva, D., Genov, N., Murakami, M.T., Sinha, M., Kumar, R.P., Kaur, P., Kumar, S., Dey, S., Sharma, S., Vrielink, A., Betzel, C., Takeda, S., Arni, R.K., Singh, T.P., Kini, R.M. (2011). Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J. 278(23), 4544–4576.
Kasturiratne, A., Wickremasinghe, A.R., de Silva, N., Gunawardena, N.K., Pathmeswaran, A., et al. (2008). The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLoS Med. 5, 1591–1604.
Kearney, E.B., Singer, T.P. (1951). The L-amino acid oxidases of snake venom. V. Mechanism of the reversible inactivation. Arch Biochem. 33, 414–426.
Kini, R.M. (2003). Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon. 42, 827-840.
Kini, R.M. (2006). Anticoagulant proteins from snake venoms: structure, function and mechanism. Biochem J 397, 377-387.
Kini, R.M., and Doley, R. (2010). Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 56, 855-867.
Kini, R.M., Evans, H.J. (1989). A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon. 27, 613–635.
Konshina, A.G., Boldyrev, I.A., Utkin, Y.N., Omel’kov, A.V., Efremov, R.G. (2011). Snake cytotoxins bind to membranes via interactions with phosphatidylserine head groups of lipids. PLoS One. 6, e19064.
Konshina, A.G., Boldyrev, I.A., Utkin, Y.N., Omel'kov, A.V., and Efremov, R.G. (2011). Snake cytotoxins bind to membranes via interactions with phosphatidylserine head groups of lipids. PLoS One 6, e19064.
Konshina, A.G., Dubovskii, P.V., Efremov, R.G. (2012). Structure and dynamics of cardiotoxins. Curr. Protein Pept. Sci. 13, 570-584.
Kroemer, G., El-Deiry, W.S., Golstein, P., Peter, M.E., Vaux, D., Vandenabeele, P., Zhivotovsky, B., Blagosklonny, M.V., Malorni, W., Knight, R.A., Piacentini, M., Nagata, S., Melino, G. (2005). Nomenclature Committee on Cell Death. Classification of cell death: recommendations of the nomenclature committee on cell death. Cell Death Differ. 12, 1463-1467.
Kroemer, G., Galluzzi, L., Vandenabeele, P., Abrams, J., Alnemri, E.S., Baehrecke, E.H., Blagosklonny, M.V., El-Deiry, W.S., Golstein, Green, D.R., et al. (2008). Cell Death Differ., in press. 10.1038, cdd.2008.150
Kularatne, S.A., Budagoda, B.D., Gawarammana, I.B., Kularatne, W.K. (2009). Epidemiology, clinical profile and management issues of cobra (Naja naja) bites in Sri Lanka: first authenticated case series. Trans. R. Soc. Trop. Med. Hyg. 103(9), 924–930.
Kumar, T.K., Jayaraman, G., Lee, C.S., Arunkumar, A.I., Sivaraman, T. et al. (1997). Snake venom cardiotoxins-structure, dynamics, function and folding. J. Biomol Struct. Dyn. 15, 431-463.
Laustsen, A.H., Gutiérrez, J.M., Lohse, B., Rasmussen, A.R., Fernández, J., Milbo, C. et al. (2015). Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Toxicon. 99, 23–35.
Leibowitz, B., Yu, J. (2010). Mitochondrial signaling in cell death via the Bcl-2 family, Cancer Biol. Ther., 9, 417–422.
Liu, C.C, Linb, C.C., Hsiaoc, Y.C., Wangb, P.J., Yu, J.S. (2018). Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. Journal of Proteomics. 06, 003.
Lomonte, B., Rangel, J. (2012). Snake venom Lys49 myotoxins: From phospholipases A2 to non-enzymatic membrane disruptors. Toxicon. 60, 520–530.
Mackessy, S.P. (2009). The field of reptile toxinology. Snakes, lizards, and their venoms. In: Mackessy SP, editor. Handbook of venoms and toxins of reptiles. Boca Raton, FL: Taylor and Francis Group. CRC Press. 3–23
Mahmood, Z., Shukla, Y. (2010). Death receptors: targets for cancer therapy. Exp. Cell Res., 316, 887–899.
Mao, Y.C., Liu, P.Y., Chiang, L.C., Lai, C.S., Lai, K.L., Ho, C.H., Wang, T.H., and Yang, C.C. (2018). Naja atra snakebite in Taiwan. Clin Toxicol (Phila) 56, 273-280.
Markland, Jr. F.S., Swenson, S. (2013). Snake venom metalloproteinases. Toxicon. 62, 3–18.
Martinou, J.C., Youle, R.J. (2011). Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev. Cell, 21, 92–101.
Mohapatra, B., Warrell, D.A., Suraweera, W., Bhatia, P., Dhingra, N., Jotkar, R.M., et al. (2011). Snakebite mortality in India: a nationally representative mortality survey. PLoS Negl. Trop Dis. 5, e1018.
Muller, GJ., Modler, H., Wium, CA., Veale, DJH., Marks, C J. (2012) Snake bite in southern Africa: diagnosis and management. CME October 2012 Vol. 30 No. 10.
Nalbantsoy, A., Hempel, B.F., Petras, D., Heiss, P., Gocmen, B., Igci, N., Yildiz, M.Z., and Sussmuth, R.D. (2017). Combined venom profiling and cytotoxicity screening of the Radde's mountain viper (Montivipera raddei) and Mount Bulgar Viper (Montivipera bulgardaghica) with potent cytotoxicity against human A549 lung carcinoma cells. Toxicon 135, 71-83.
Nawarak, J., Sinchaikul, S., Wu, C.Y., Liau, M.Y., Phutrakul, S., Chen, S.T. (2003). Proteomics of snake venoms from Elapidae and Viperidae families by multidimensional chromatographic methods. Electrophoresis. 24(16), 2838–2854.
Orrenius, S., Gogvadze, V., Zhivotovsky, B. (2007). Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol., 47, 143–183.
Orrenius, S., Gogvadze, V., Zhivotovsky, B. (2015). Calcium and mitochondria in the regulation of cell death, Biochem. Biophys. Res. Commun., 460, 72–81.
O'Shea, M. (2008). Venomous Snakes of the World. New Holland. 74. ISBN 978-1-84773-086-2.
Osipov, A.V., Kasheverov, I.E., Makarova, Y.V., Starkov, V.G., Vorontsova, O.V., Ziganshin, R., Andreeva, T.V., Serebryakova, M.V., Benoit, A., Hogg, R.C., et al. (2008). Naturally occurring disulfide-bound dimers of three-fingered toxins: a paradigm for biological activity diversification. J Biol Chem 283, 14571-14580.
Paoli, M., Rigoni, M., Koster, G., Rossetto, O., Montecucco, C., and Postle, A.D. (2009). Mass spectrometry analysis of the phospholipase A(2) activity of snake pre-synaptic neurotoxins in cultured neurons. J Neurochem 111, 737-744.
Petan, T., Krizaj, I., and Pungercar, J. (2007). Restoration of enzymatic activity in a Ser-49 phospholipase A2 homologue decreases its Ca(2+)-independent membrane-damaging activity and increases its toxicity. Biochemistry 46, 12795-12809.
Prindull, G. (1995). Apoptosis in the embryo and tumorigenesis. Eur J Cancer, 31a, 116-123.
Pungerčar, J., Križaj, I. (2007). Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2. Toxicon. 50(7), 871–892.
Reid, H.A., (1964). Cobra-Bites. Br. Med. J. 2(5408), 540–545.
Rigoni, M., Pizzo, P., Schiavo, G., Weston, A.E., Zatti, G., Caccin, P., Rossetto, O., Pozzan, T., and Montecucco, C. (2007). Calcium Influx and Mitochondrial Alterations at Synapses Exposed to Snake Neurotoxins or Their Phospholipid Hydrolysis Products. Journal of Biological Chemistry 282, 11238-11245.
Rodrigues, R.S., Izidoro, L.F., de Oliveira, Jr. R.J. (2009). Sampaio SV, Soares AM, Rodrigues VM. Protein Pept Lett. 16(8), 894–898.
Rodrigues, R.S., Izidoro, L.F., de Oliveira, R.J., Jr., Sampaio, S.V., Soares, A.M., and Rodrigues, V.M. (2009). Snake venom phospholipases A2: a new class of antitumor agents. Protein Pept Lett 16, 894-898.
Sajevic T., Leonardi A., Križaj I. (2011). Haemostatically active proteins in snake venoms. Toxicon. 57, 627–645.
Savill, J., Fadok, V. (2000). Corpse clearance defines the meaning of cell death. Nature, 407, 784-788.
Scott, D.L., White, S.P., Otwinowski, Z., Yuan, W., Gelb, M.H., and Sigler, P.B. (1990). Interfacial catalysis: the mechanism of phospholipase A2. Science 250, 1541-1546.
Sergey, Y., Proskuryakov, Anatoli, G. Konoplyannikov, and Vladimir, L. Gabai. Necrosis: a specific form of programmed cell death?. Experimental Cell Research. 283(2003), 1–16.
Silva, M.T. (2010). Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett. 584(22), 4491-4499.
Susan, L., Fink and Brad, T. Cookson. (2005). Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells. Infection and immunity, 1907–1916.
Tan, C.H., Tan, K.Y., Fung, S.Y., and Tan, N.H. (2015a). Venom-gland transcriptome and venom proteome of the Malaysian king cobra (Ophiophagus hannah). BMC Genomics 16, 687.
Tan, K.Y., Tan, C.H., Fung, S.Y., and Tan, N.H. (2015b). Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics 120, 105-125.
Tan, N.H., Armugam, A. (1990). In vivo interactions between neurotoxin, cardiotoxin and phospholipases A2 isolated from Malayan cobra (NajaNaja sputatrix) venom. Toxicon. 28(10), 1193-1198.
Tan, N.H., Choy, S.K. (1993). The edema-inducing activity of Ophiophagus hannah (King Cobra) venom L-amino acid oxidase. Kuala Lumpur: Malaysian Society on Toxinology. 268–273.
Tasoulis, T., and Isbister, G.K. (2017). A Review and Database of Snake Venom Proteomes. Toxins (Basel) 9.
Trinh, X.K., TrinH, X.A., Le, K.Q., Nguyen, B.P., Thai, D.T., Trinh, X.L., Pham, M.H., Warrell, D.A. et al. (2013). Venomous Snake of Medical Importance and Snake Bites Management in Vietnam. 2nd Annual Scientific Conference in Ho Chi Minh City, Vietnam (Oral presentation).
Tsai, Y.H., Hsu, W.H., Huang, K.C., Yu, P.A., Chen, C.L., and Kuo, L.T. (2017). Necrotizing fasciitis following venomous snakebites in a tertiary hospital of southwest Taiwan. Int J Infect Dis 63, 30-36.
Tu, A.T. (1977). Venoms: chemistry and molecular biology. New York: Wiley.
Udaya, K., Ranawaka, David G., Lalloo, H., Janaka de Silva. (2013). Neurotoxicity in Snakebite—The Limits of Our Knowledge. PLoS Negl. Trop Dis. 7(10), e2302
Van den Berg, C.W., Aerts, P.C., Van Dijk, H. (1991). In vivo anti-complementary activities of the cobra venom factors from Naja naja and Naja haje. J. Immunol. Methods. 136(2), 287-94.
Warrell, D.A. (1995). Clinical toxicology of snakebite in Africa and the Middle East /Arabian peninsula. In: Handbook of Clinical Toxicology of Animal Venoms and
Wellner, D. (1966). Evidence for conformational changes in L-amino acid oxidase associated with reversible inactivation. Biochemistry. 5, 1585–1591.
Williams, D., Gutie´rrez, J.M., Harrison, R., Warrell, D.A., White, J., Winkel, K.D., et al. (2010). The Global Snake Bite Initiative: an antidote for snake bite. Lancet. 375(9708), 89–91.
Wong, K.Y., Tan, C.H., Tan, K.Y., Quraishi, N.H., Tan, N.H. (2018). Elucidating the biogeographical variation of the venom of Naja naja spectacled cobra) from Pakistan through a venom-decomplexing proteomic study. J. of Proteomics. 175, 156–173.
Wongtongkam, N., Wilde, H., Sitthi-Amorn, C., Ratanabanangkoon, K, (2005). A study of Thai cobra (Naja kaouthia) bites in Thailand. Mil. Med. 170, 336–341.
Xiao, H., Pan, H., Liao, K., Yang, M., & Huang, C. (2017). Snake Venom PLA2, a Promising Target for Broad-Spectrum Antivenom Drug Development. BioMed Research International, 2017, 6592820.
Yen, T.Y., Joshi, R.K., Yan, H., Seto, N.O., Palcic, M.M., and Macher, B.A. (2000). Characterization of cysteine residues and disulfide bonds in proteins by liquid chromatography/electrospray ionization tandem mass spectrometry. J Mass Spectrom 35, 990-1002.
Zong, W.X. and Thompson, C.B. (2006). Necrotic death as a cell fate. Genes Dev. 20, 1-15.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *