帳號:guest(18.222.106.205)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):潘氏雪貞
作者(外文):Phan, Thi Tuyet Trinh
論文名稱(中文):金屬硫蛋白基因表現差異性之中國倉鼠卵巢細胞受砷誘導之細胞毒性的探討
論文名稱(外文):Assessment of arsenite-induced cell toxicity in metallothionein quiescent and over-expressed Chinese hamster ovary cells
指導教授(中文):林立元
指導教授(外文):Lin, Lih-Yuan
口試委員(中文):楊嘉鈴
柯政昌
口試委員(外文):YANG, JIA-LING
Ko, Jen-Chung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:105080421
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:91
中文關鍵詞:中國倉鼠卵巢細胞受
外文關鍵詞:arsenitemetallothioneinChinese hamster ovary cellsautophagyapoptosis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
如同大多數的砷化物,偏亞砷酸鈉 (sodium arsenite, NaAsO2) 也被認為是一種致癌物與環境汙染物。除了造成氧化壓力與細胞生理異常,NaAsO2誘導許多壓力相關基因的表現,例如在金屬解毒與避免細胞遭受氧化壓力中扮演重要角色的金屬硫蛋白 (metallothionein, MT) 便會受砷誘導表現 。本研究中我們使用兩種MT基因表現差異的中國倉鼠卵巢細胞 ,分別為MT基因不被誘導的CHO-K1和被大量誘導表現Cdr細胞,探討NaAsO2誘發的細胞毒性。兩種細胞以NaAsO2處理都會降低細胞存活率並且增加Sub-G1比例。NaAsO2增加caspase-3活性,造成CHO-K1細胞凋亡,而此現象可被pan-caspase的抑制劑z-VAD-fmk所抑制;然而Cdr的細胞凋亡則非經由caspase相關的路徑。此外NaAsO2也會造成細胞自噬,我們發現Cdr細胞會完成細胞自噬過程;然而在CHO-K1中NaAsO2誘發的細胞自噬過程會被阻斷,並發現autophago-somes的累積,LC3-II與p62的增加,以及溶酶體酸性磷酸酶活性的下降。當進一步以細胞自噬的抑制劑3-MA處理後會減少autophagosome的形成,並且降低NaAsO2造成的細胞死亡,因此我們認為在CHO-K1中細胞自噬為走向死亡的機制,但我們仍不清楚細胞自噬在Cdr細胞中扮演的角色。當處理ROS清除物N-acetylcysteine之後, NaAsO2所造成的兩種細胞死亡都會降低,顯示砷之細胞毒性與ROS相關。降低Cdr細胞中MT的表現會使得ROS含量增加,並加劇NaAsO2誘發細胞死亡,表示MT參與防禦砷之毒性。我們的結果顯示MT基因不受誘導表現的CHO-K1細胞中,NaAsO2會造成caspase相關的細胞凋亡,並且阻礙細胞自噬過程;然而MT基因大量表現的Cdr細胞凋亡則與caspase無關,並且細胞自噬也不受影響。而MT基因表現的差異性,可能保護細胞對抗砷透過ROS造成的細胞毒殺。 
Like other inorganic arsenicals, sodium arsenite (NaAsO2) is recognized as a human carcinogen and environmental pollutant. In addition to induction of oxidative stress and cellular abnormalities, sodium arsenite induces expression of multiple stress response genes, including metallothionein (MT), which plays a crucial role in metal detoxification and oxidative stress protection.
Here, we investigated sodium arsenite-induced toxicity in MT quiescent and over-expressed Chinese hamster ovary cells (CHO-K1 and Cdr cells, respectively). Sodium arsenite reduced cell viability and increased Sub-G1 population in both CHO-K1 and Cdr cells. The apoptosis induced by sodium arsenite in CHO-K1 cells was correlated with increased caspase-3 activity, and was partially inhibited by the pan-caspase inhibitor z-VAD-fmk. However, the apoptotic death in Cdr cells was through caspase-independent mechanisms. Sodium arsenite enhanced autophagy in both CHO-K1 and Cdr cells. Noticeably, the autophagic flux was completely progressed in Cdr cells, but was blocked in CHO-K1 cells. Arsenic treatment caused an accumulation of autophagosomes, elevation of LC3-II and p62, and decrease of lysosomal acid phosphatase activity in CHO-K1 cells, but not in Cdr cells. The autophagy may serve as a pro-death mechanism in CHO-K1 cells since inhibition of autophagosome formation by 3-methyladenine potentially diminished cell death caused by sodium arsenite. Nonetheless, the impact of autophagy on the cell fate of Cdr cells cannot be defined presently. Administration of N-acetylcysteine, a ROS scavenger, attenuated sodium arsenite-triggered cell death in both CHO-K1 and Cdr cells, indicating that sodium arsenite-induced toxicity was ROS-dependent. Finally, downregulation of MT expression increased ROS production and exacerbated sodium arsenite-triggered cell death in Cdr cells. This result suggested the involvement of MT in cellular defense system against arsenite toxicity.
In conclusion, our results revealed that sodium arsenite induced caspase-dependent apoptosis, and inhibited autophagic flux in CHO-K1, whereas it triggered caspase-independent apoptosis and facilitated a complete autophagic flux in Cdr cells. Moreover, differential expressions of MTs in CHO-K1 and Cdr cells may be involved in protecting cells against ROS-dependent cell death induced by arsenite.
ABSTRACT 3
ABBREVIATIONS 1
1.1. Metallothioneins 6
1.2. Reactive oxygen species 9
1.3. Apoptosis 11
1.4. Autophagy 15
1.5. Sodium arsenite 19
Chapter 2 MATERIALS AND METHODS 21
2.1. Cell culture and chemicals 21
2.2. Cell viability assay 22
2.3. Preparation of whole cell lysates 22
2.4. Immunoblotting analysis 22
2.5. Immunofluorescence analysis 23
2.6. Cell cycle analysis 23
2.7. Caspase-3 activity assay 24
2.8. Acid phosphatase activity assay 24
2.9. Measurement of intracellular ROS 24
2.10. siRNA transfection 25
2.11. Total RNA extraction and quantitative real-time PCR 25
2.12. Statistical analysis 26
Chapter 3 RESULTS 27
3.1. Cdr cells exhibit over-expressed level of MT-2A protein and enhanced cadmium resistance potential 27
3.2. Sodium arsenite inhibits cell proliferation and induces cell death in both CHO-K1 and Cdr cells 28
3.3. Sodium arsenite triggers caspase-dependent apoptosis of CHO-K1 cells, but caspase-independent cell death in Cdr cells 29
3.4. Sodium arsenite activates autophagy in Cdr cells, but instead blocks autophagic flux in CHO-K1 cells 30
3.5. Sodium arsenite damages cells via ROS-dependent mechanisms 31
3.6. Metallothionein may be involved in cellular defense mechanisms against sodium arsenite-induced cell death 32
Chapter 4 DISCUSSION 35
REFERENCES 44

The Respiratory Chain and Oxidative Phosphorylation. In Advances in Enzymology and Related Areas of Molecular Biology.
Agrawal, S., Flora, G., Bhatnagar, P., and Flora, S.J. (2014). Comparative oxidative stress, metallothionein induction and organ toxicity following chronic exposure to arsenic, lead and mercury in rats. Cell Mol Biol (Noisy-le-grand) 60, 13-21.
Albores, A., Koropatnick, J., Cherian, M.G., and Zelazowski, A.J. (1992). Arsenic induces and enhances rat hepatic metallothionein production in vivo. Chem Biol Interact 85, 127-140.
Anding, A.L., and Baehrecke, E.H. (2015). Autophagy in Cell Life and Cell Death. Curr Top Dev Biol 114, 67-91.
Andrews, G.K. (2000). Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59, 95-104.
Andrews, G.K. (2001). Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 14, 223-237.
Aschner, M., Cherian, M.G., Klaassen, C.D., Palmiter, R.D., Erickson, J.C., and Bush, A.I. (1997). Metallothioneins in Brain—The Role in Physiology and Pathology. Toxicol Appl Pharm 142, 229-242.
Babula, P., Masarik, M., Adam, V., Eckschlager, T., Stiborova, M., Trnkova, L., Skutkova, H., Provaznik, I., Hubalek, J., and Kizek, R. (2012). Mammalian metallothioneins: properties and functions. Metallomics 4, 739-750.
Baird, S.K., Kurz, T., and Brunk, U.T. (2006). Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem J 394, 275-283.
Barth, S., Glick, D., and Macleod, K.F. (2010). Autophagy: assays and artifacts. J Pathol 221, 117-124.
Benbrahim-Tallaa, L., Waterland, R.A., Styblo, M., Achanzar, W.E., Webber, M.M., and Waalkes, M.P. (2005). Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and K-ras oncogene activation. Toxicol Appl Pharmacol 206, 288-298.
Bienert, G.P., Schussler, M.D., and Jahn, T.P. (2008). Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem Sci 33, 20-26.
Bjorkoy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H., and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171, 603-614.
Bjorkoy, G., Lamark, T., Pankiv, S., Overvatn, A., Brech, A., and Johansen, T. (2009). Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452, 181-197.
Brieger, K., Schiavone, S., Miller, F.J., Jr., and Krause, K.H. (2012). Reactive oxygen species: from health to disease. Swiss Med Wkly 142, w13659.
Brinkel, J., Khan, M.H., and Kraemer, A. (2009). A systematic review of arsenic exposure and its social and mental health effects with special reference to Bangladesh. Int J Environ Res Public Health 6, 1609-1619.
Carpene, E., Andreani, G., and Isani, G. (2007). Metallothionein functions and structural characteristics. J Trace Elem Med Biol 21 Suppl 1, 35-39.
Chen, H.Y., Zheng, C.Y., Zou, G.L., Xie, D.X., and Gong, J.P. (2004). Peplomycin induces G1-phase specific apoptosis in liver carcinoma cell line Bel-7402 involving G2-phase arrest. Acta Pharmacol Sin 25, 1698-1704.
Cherian, M.G., Jayasurya, A., and Bay, B.H. (2003). Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res 533, 201-209.
Chiaverini, N., and De Ley, M. (2010). Protective effect of metallothionein on oxidative stress-induced DNA damage. Free Radic Res 44, 605-613.
Chubatsu, L.S., and Meneghini, R. (1993). Metallothionein protects DNA from oxidative damage. Biochem J 291 ( Pt 1), 193-198.
Circu, M.L., and Aw, T.Y. (2012). Glutathione and modulation of cell apoptosis. Biochim Biophys Acta 1823, 1767-1777.
Corrigan, A.J., and Huang, P.C. (1983). Cadmium and zinc flux in wild-type and cadmium-resistant CHO cells. Biol Trace Elem Res 5, 25-33.
Cory, S., and Adams, J.M. (2002). The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2, 647-656.
Coyle, P., Philcox, J.C., Carey, L.C., and Rofe, A.M. (2002). Metallothionein: The multipurpose protein. Cell Mol Life Sci 59, 627-647.
Crawford, B.D., Enger, M.D., Griffith, B.B., Griffith, J.K., Hanners, J.L., Longmire, J.L., Munk, A.C., Stallings, R.L., Tesmer, J.G., Walters, R.A., et al. (1985). Coordinate amplification of metallothionein I and II genes in cadmium-resistant Chinese hamster cells: implications for mechanisms regulating metallothionein gene expression. Mol Cell Biol 5, 320-329.
Darzynkiewicz, Z., Bedner, E., Traganos, F., and Murakami, T. (1998). Critical aspects in the analysis of apoptosis and necrosis. Hum Cell 11, 3-12.
Davis, S.R., and Cousins, R.J. (2000). Metallothionein expression in animals: a physiological perspective on function. J Nutr 130, 1085-1088.
del Rio, L.A., Sandalio, L.M., Corpas, F.J., Palma, J.M., and Barroso, J.B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141, 330-335.
DeMoor, J.M., and Koropatnick, D.J. (2000). Metals and cellular signaling in mammalian cells. Cell Mol Biol (Noisy-le-grand) 46, 367-381.
Di Meo, S., Reed, T.T., Venditti, P., and Victor, V.M. (2016). Role of ROS and RNS Sources in Physiological and Pathological Conditions. Oxid Med Cell Longev 2016, 1245049.
Donna, D., Tianqi, X., and Sharad, K. (2015). Autophagy as a pro-death pathway. Immunology and Cell Biology 93, 35-42.
Duyndam, M.C., Hulscher, S.T., van der Wall, E., Pinedo, H.M., and Boven, E. (2003). Evidence for a role of p38 kinase in hypoxia-inducible factor 1-independent induction of vascular endothelial growth factor expression by sodium arsenite. J Biol Chem 278, 6885-6895.
Dziegiel, P., Pula, B., Kobierzycki, C., Stasiolek, M., and Podhorska-Okolow, M. (2016). Metallothioneins in Normal and Cancer Cells. Adv Anat Embryol Cell Biol 218, 1-117.
El-Agamey, A., Lowe, G.M., McGarvey, D.J., Mortensen, A., Phillip, D.M., Truscott, T.G., and Young, A.J. (2004). Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430, 37-48.
Eskelinen, E.L., and Saftig, P. (2009). Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta 1793, 664-673.
Filomeni, G., Rotilio, G., and Ciriolo, M.R. (2002). Cell signalling and the glutathione redox system. Biochem Pharmacol 64, 1057-1064.
Fulda, S., Gorman, A.M., Hori, O., and Samali, A. (2010). Cellular stress responses: cell survival and cell death. Int J Cell Biol 2010, 214074.
Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., Alnemri, E.S., Altucci, L., Amelio, I., Andrews, D.W., et al. (2018). Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25, 486-541.
Garla, R., Ganger, R., Mohanty, B.P., Verma, S., Bansal, M.P., and Garg, M.L. (2016). Metallothionein does not sequester arsenic(III) ions in condition of acute arsenic toxicity. Toxicology 366-367, 68-73.
Garrett, S.H., Belcastro, M., Sens, M.A., Somji, S., and Sens, D.A. (2001). Acute exposure to arsenite induces metallothionein isoform-specific gene expression in human proximal tubule cells. J Toxicol Environ Health A 64, 343-355.
Ghezzi, P., Jaquet, V., Marcucci, F., and Schmidt, H. (2017). The oxidative stress theory of disease: levels of evidence and epistemological aspects. Br J Pharmacol 174, 1784-1796.
Ghoshal, K., and Jacob, S.T. (2001). Regulation of metallothionein gene expression. Prog Nucleic Acid Res Mol Biol 66, 357-384.
Gibson, S.B. (2013). Investigating the role of reactive oxygen species in regulating autophagy. Methods Enzymol 528, 217-235.
Green, D.R., and Levine, B. (2014). To Be or Not to Be?: How Selective Autophagy and Cell Death Govern Cell Fate. Cell 157, 65-75.
Green, D.R., and Llambi, F. (2015). Cell Death Signaling. Cold Spring Harb Perspect Biol 7.
Gunawardana, C.G., Martinez, R.E., Xiao, W., and Templeton, D.M. (2006). Cadmium inhibits both intrinsic and extrinsic apoptotic pathways in renal mesangial cells. American Journal of Physiology-Renal Physiology 290, F1074-F1082.
Gunes, C., Heuchel, R., Georgiev, O., Muller, K.H., Lichtlen, P., Bluthmann, H., Marino, S., Aguzzi, A., and Schaffner, W. (1998). Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. EMBO J 17, 2846-2854.
Gunther, V., Lindert, U., and Schaffner, W. (2012). The taste of heavy metals: gene regulation by MTF-1. Biochim Biophys Acta 1823, 1416-1425.
Guzzo, A., Karatzios, C., Diorio, C., and DuBow, M.S. (1994). Metallothionein-II and ferritin H mRNA levels are increased in arsenite-exposed HeLa cells. Biochem Biophys Res Commun 205, 590-595.
Halliwell, B., Gutteridge, J.M.C., and Cross, C.E. (1992). Free radicals, antioxidants, and human disease: Where are we now? The Journal of Laboratory and Clinical Medicine 119, 598-620.
Han, J., Hou, W., Goldstein, L.A., Lu, C., Stolz, D.B., Yin, X.M., and Rabinowich, H. (2008). Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283, 19665-19677.
Hancock, J.T., Desikan, R., and Neill, S.J. (2001). Role of reactive oxygen species in cell signalling pathways. Biochemical Society Transactions 29, 345-349.
Harrison, M.T., and McCoy, K.L. (2001). Immunosuppression by arsenic: a comparison of cathepsin L inhibition and apoptosis. Int Immunopharmacol 1, 647-656.
Hata, A., Yamanaka, K., Habib, M.A., Endo, Y., Fujitani, N., and Endo, G. (2012). Arsenic speciation analysis of urine samples from individuals living in an arsenic-contaminated area in Bangladesh. Environ Health Prev Med 17, 235-245.
He, C., and Levine, B. (2010). The Beclin 1 interactome. Curr Opin Cell Biol 22, 140-149.
He, X., and Ma, Q. (2009). Induction of metallothionein I by arsenic via metal-activated transcription factor 1: critical role of C-terminal cysteine residues in arsenic sensing. J Biol Chem 284, 12609-12621.
Henkel, G., and Krebs, B. (2004). Metallothioneins: zinc, cadmium, mercury, and copper thiolates and selenolates mimicking protein active site features--structural aspects and biological implications. Chem Rev 104, 801-824.
Heuchel, R., Radtke, F., Georgiev, O., Stark, G., Aguet, M., and Schaffner, W. (1994). The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. The EMBO Journal 13, 2870-2875.
Hidalgo, J., Aschner, M., Zatta, P., and Vasak, M. (2001). Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55, 133-145.
Holoch, P.A., and Griffith, T.S. (2009). TNF-related apoptosis-inducing ligand (TRAIL): a new path to anti-cancer therapies. Eur J Pharmacol 625, 63-72.
Hotchkiss, R.S., Strasser, A., McDunn, J.E., and Swanson, P.E. (2009). Cell Death in Disease: Mechanisms and Emerging Therapeutic Concepts. The New England journal of medicine 361, 1570-1583.
Hou, W., Han, J., Lu, C.S., Goldstein, L.A., and Rabinowich, H. (2010). Autophagic degradation of active caspase-8 A crosstalk mechanism between autophagy and apoptosis. Autophagy 6, 891-900.
Hozumi, I., Asanuma, M., Yamada, M., and Uchida, Y. (2004). Metallothioneins and Neurodegenerative Diseases. Journal of Health Science 50, 323-331.
Huang, X., Halicka, H.D., Traganos, F., Tanaka, T., Kurose, A., and Darzynkiewicz, Z. (2005). Cytometric assessment of DNA damage in relation to cell cycle phase and apoptosis. Cell Prolif 38, 223-243.
Hughes, M.F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133, 1-16.
Irvine, G.W., and Stillman, M.J. (2013). Topographical analysis of As-induced folding of alpha-MT1a. Biochem Biophys Res Commun 441, 208-213.
Irvine, G.W., Summers, K.L., and Stillman, M.J. (2013). Cysteine accessibility during As3+ metalation of the alpha- and beta-domains of recombinant human MT1a. Biochem Biophys Res Commun 433, 477-483.
Isani, G., and Carpene, E. (2014). Metallothioneins, unconventional proteins from unconventional animals: a long journey from nematodes to mammals. Biomolecules 4, 435-457.
Ivanov, V.N., Wen, G., and Hei, T.K. (2013). Sodium arsenite exposure inhibits AKT and Stat3 activation, suppresses self-renewal and induces apoptotic death of embryonic stem cells. Apoptosis 18, 188-200.
Janssens, T.K.S., Roelofs, D., and van Straalen, N.M. (2009). Molecular mechanisms of heavy metal tolerance and evolution in invertebrates. Insect Sci 16, 3-18.
Jiang, G., Gong, Z., Li, X.F., Cullen, W.R., and Le, X.C. (2003). Interaction of trivalent arsenicals with metallothionein. Chem Res Toxicol 16, 873-880.
Jin, Z., and El-Deiry, W.S. (2005). Overview of cell death signaling pathways. Cancer Biol Ther 4, 139-163.
Jones, D.P. (2002). Redox potential of GSH/GSSG couple: assay and biological significance. Methods Enzymol 348, 93-112.
Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19, 5720-5728.
Kajstura, M., Halicka, H.D., Pryjma, J., and Darzynkiewicz, Z. (2007). Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete "sub-G1" peaks on DNA content histograms. Cytometry A 71, 125-131.
Kam, P.C., and Ferch, N.I. (2000). Apoptosis: mechanisms and clinical implications. Anaesthesia 55, 1081-1093.
Kang, R., Zeh, H.J., Lotze, M.T., and Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18, 571-580.
Kantari, C., and Walczak, H. (2011). Caspase-8 and Bid: Caught in the act between death receptors and mitochondria. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1813, 558-563.
Kassim, R., Ramseyer, C., and Enescu, M. (2013). Oxidation reactivity of zinc-cysteine clusters in metallothionein. J Biol Inorg Chem 18, 333-342.
Kassiotis, C., Ballal, K., Wellnitz, K., Vela, D., Gong, M., Salazar, R., Frazier, O.H., and Taegtmeyer, H. (2009). Markers of autophagy are downregulated in failing human heart after mechanical unloading. Circulation 120, S191-197.
Kehrer, J.P., and Klotz, L.-O. (2015). Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health. Critical Reviews in Toxicology 45, 765-798.
Khairul, I., Wang, Q.Q., Jiang, Y.H., Wang, C., and Naranmandura, H. (2017). Metabolism, toxicity and anticancer activities of arsenic compounds. Oncotarget 8, 23905-23926.
Kim, Y., Jeong, I.G., You, D., Song, S.H., Suh, N., Jang, S.W., Kim, S., Hwang, J.J., and Kim, C.S. (2014). Sodium meta-arsenite induces reactive oxygen species-dependent apoptosis, necrosis, and autophagy in both androgen-sensitive and androgen-insensitive prostate cancer cells. Anticancer Drugs 25, 53-62.
Kitareewan, S., Roebuck, B.D., Demidenko, E., Sloboda, R.D., and Dmitrovsky, E. (2007). Lysosomes and trivalent arsenic treatment in acute promyelocytic leukemia. J Natl Cancer I 99, 41-52.
Klaassen, C.D., Liu, J., and Diwan, B.A. (2009). Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238, 215-220.
Klatt, P., Molina, E.P., De Lacoba, M.G., Padilla, C.A., Martinez-Galesteo, E., Barcena, J.A., and Lamas, S. (1999). Redox regulation of c-Jun DNA binding by reversible S-glutathiolation. FASEB J 13, 1481-1490.
Klionsky, D.J. (2005). The molecular machinery of autophagy: unanswered questions. J Cell Sci 118, 7-18.
Klionsky, D.J., Cregg, J.M., Dunn, W.A., Jr., Emr, S.D., Sakai, Y., Sandoval, I.V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M., et al. (2003). A unified nomenclature for yeast autophagy-related genes. Dev Cell 5, 539-545.
Koizumi, S., Suzuki, K., Ogra, Y., Yamada, H., and Otsuka, F. (1999). Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 259, 635-642.
Komatsu, M., and Ichimura, Y. (2010). Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584, 1374-1378.
Kundu, M., and Thompson, C.B. (2008). Autophagy: basic principles and relevance to disease. Annu Rev Pathol 3, 427-455.
Lamark, T., Svenning, S., and Johansen, T. (2017). Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays In Biochemistry 61, 609-624.
Langmade, S.J., Ravindra, R., Daniels, P.J., and Andrews, G.K. (2000). The transcription factor MTF-1 mediates metal regulation of the mouse ZnT1 gene. J Biol Chem 275, 34803-34809.
Lau, A., Zheng, Y., Tao, S.S., Wang, H.H., Whitman, S.A., White, E., and Zhang, D.D. (2013). Arsenic Inhibits Autophagic Flux, Activating the Nrf2-Keap1 Pathway in a p62-Dependent Manner. Molecular and Cellular Biology 33, 2436-2446.
Lee, S.J., Park, M.H., Kim, H.J., and Koh, J.Y. (2010). Metallothionein-3 Regulates Lysosomal Function in Cultured Astrocytes Under Both Normal and Oxidative Conditions. Glia 58, 1186-1196.
Lee, T.C., Ko, J.L., and Jan, K.Y. (1989). Differential cytotoxicity of sodium arsenite in human fibroblasts and Chinese hamster ovary cells. Toxicology 56, 289-299.
Leibowitz, B., and Yu, J. (2010). Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol Ther 9, 417-422.
Lemarie, A., Lagadic-Gossmann, D., Morzadec, C., Allain, N., Fardel, O., and Vernhet, L. (2004). Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. Free Radic Biol Med 36, 1517-1531.
Li, B., Li, X., Zhu, B., Zhang, X., Wang, Y., Xu, Y., Wang, H., Hou, Y., Zheng, Q., and Sun, G. (2013). Sodium arsenite induced reactive oxygen species generation, nuclear factor (erythroid-2 related) factor 2 activation, heme oxygenase-1 expression, and glutathione elevation in Chang human hepatocytes. Environ Toxicol 28, 401-410.
Liang, X.H., Kleeman, L.K., Jiang, H.H., Gordon, G., Goldman, J.E., Berry, G., Herman, B., and Levine, B. (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72, 8586-8596.
Lichtlen, P., Wang, Y., Belser, T., Georgiev, O., Certa, U., Sack, R., and Schaffner, W. (2001). Target gene search for the metal-responsive transcription factor MTF-1. Nucleic Acids Res 29, 1514-1523.
Lin, L., and Baehrecke, E.H. (2015). Autophagy, cell death, and cancer. Mol Cell Oncol 2, e985913.
Lindgren, A., Danielsson, B.R., Dencker, L., and Vahter, M. (1984). Embryotoxicity of arsenite and arsenate: distribution in pregnant mice and monkeys and effects on embryonic cells in vitro. Acta Pharmacol Toxicol (Copenh) 54, 311-320.
Liu, G., Zou, H., Luo, T., Long, M., Bian, J., Liu, X., Gu, J., Yuan, Y., Song, R., Wang, Y., et al. (2016). Caspase-Dependent and Caspase-Independent Pathways Are Involved in Cadmium-Induced Apoptosis in Primary Rat Proximal Tubular Cell Culture. PLoS One 11, e0166823.
Liu, J., Cheng, M.L., Yang, Q., Shan, K.R., Shen, J., Zhou, Y.S., Zhang, X.J., Dill, A.L., and Waalkes, M.P. (2007). Blood metallothionein transcript as a biomarker for metal sensitivity: Low blood metallothionein transcripts in arsenicosis patients from Guizhou, China. Environ Health Persp 115, 1101-1106.
Liu, S.X., Athar, M., Lippai, I., Waldren, C., and Hei, T.K. (2001). Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci U S A 98, 1643-1648.
Liu, Y., and Levine, B. (2015). Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22, 367-376.
Liu, Y., Shoji-Kawata, S., Sumpter, R.M., Wei, Y.J., Ginet, V., Zhang, L.Y., Posner, B., Tran, K.A., Green, D.R., Xavier, R.J., et al. (2013). Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. P Natl Acad Sci USA 110, 20364-20371.
Liu, Y.P., Liu, J., Iszard, M.B., Andrews, G.K., Palmiter, R.D., and Klaassen, C.D. (1995). Transgenic mice that overexpress metallothionein-I are protected from cadmium lethality and hepatotoxicity. Toxicol Appl Pharm 135, 222-228.
Liu, Z., Shen, J., Carbrey, J.M., Mukhopadhyay, R., Agre, P., and Rosen, B.P. (2002). Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci U S A 99, 6053-6058.
Luo, S., and Rubinsztein, D.C. (2010). Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 17, 268-277.
Maciaszczyk-Dziubinska, E., Wawrzycka, D., and Wysocki, R. (2012). Arsenic and antimony transporters in eukaryotes. Int J Mol Sci 13, 3527-3548.
Mahmood, Z., and Shukla, Y. (2010). Death receptors: targets for cancer therapy. Exp Cell Res 316, 887-899.
Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., et al. (2007). Functional and physical interaction between Bcl-X-L and a BH3-like domain in Beclin-1. Embo Journal 26, 2527-2539.
Mamais, A., Chia, R., Beilina, A., Hauser, D.N., Hall, C., Lewis, P.A., Cookson, M.R., and Bandopadhyay, R. (2014). Arsenite stress down-regulates phosphorylation and 14-3-3 binding of leucine-rich repeat kinase 2 (LRRK2), promoting self-association and cellular redistribution. J Biol Chem 289, 21386-21400.
Margoshes, M., and Vallee, B.L. (1957). A Cadmium Protein from Equine Kidney Cortex. J Am Chem Soc 79, 4813-4814.
Martinho, A., Goncalves, I., and Santos, C.R. (2013). Glucocorticoids regulate metallothionein-1/2 expression in rat choroid plexus: effects on apoptosis. Mol Cell Biochem 376, 41-51.
Martinou, J.C., and Youle, R.J. (2011). Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21, 92-101.
Masella, R., Di Benedetto, R., Vari, R., Filesi, C., and Giovannini, C. (2005). Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16, 577-586.
Masters, B.A., Kelly, E.J., Quaife, C.J., Brinster, R.L., and Palmiter, R.D. (1994). Targeted Disruption of Metallothionein-I and Metallothionein-Ii Genes Increases Sensitivity to Cadmium. P Natl Acad Sci USA 91, 584-588.
Mattes, M.J. (2007). Apoptosis assays with lymphoma cell lines: problems and pitfalls. Br J Cancer 96, 928-936.
Mehus, A.A., Muhonen, W.W., Garrett, S.H., Somji, S., Sens, D.A., and Shabb, J.B. (2014). Quantitation of human metallothionein isoforms: a family of small, highly conserved, cysteine-rich proteins. Mol Cell Proteomics 13, 1020-1033.
Mididoddi, S., McGuirt, J.P., Sens, M.A., Todd, J.H., and Sens, D.A. (1996). Isoform-specific expression of metallothionein mRNA in the developing and adult human kidney. Toxicol Lett 85, 17-27.
Miles, A.T., Hawksworth, G.M., Beattie, J.H., and Rodilla, V. (2000). Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit Rev Biochem Mol 35, 35-70.
Miyamoto, Y., Umebayashi, Y., and Nishisaka, T. (1999). Comparison of phototoxicity mechanism between pulsed and continuous wave irradiation in photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology 53, 53-59.
Mizushima, N., Yamamoto, A., Hatano, M., Kobayashi, Y., Kabeya, Y., Suzuki, K., Tokuhisa, T., Ohsumi, Y., and Yoshimori, T. (2001). Dissection of Autophagosome Formation Using Apg5-Deficient Mouse Embryonic Stem Cells. The Journal of Cell Biology 152, 657-668.
Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140, 313-326.
Moffatt, P., and Denizeau, F. (1997). Metallothionein in physiological and physiopathological processes. Drug Metab Rev 29, 261-307.
Moleirinho, A., Carneiro, J., Matthiesen, R., Silva, R.M., Amorim, A., and Azevedo, L. (2011). Gains, losses and changes of function after gene duplication: study of the metallothionein family. PLoS One 6, e18487.
Morris, S., and Huang, P.C. (1987). Transient response of amplified metallothionein genes in CHO cells to induction by alpha interferon. Mol Cell Biol 7, 600-605.
Muenyi, C.S., Ljungman, M., and States, J.C. (2015). Arsenic Disruption of DNA Damage Responses-Potential Role in Carcinogenesis and Chemotherapy. Biomolecules 5, 2184-2193.
Murata, M., Gong, P., Suzuki, K., and Koizumi, S. (1999). Differential metal response and regulation of human heavy metal-inducible genes. J Cell Physiol 180, 105-113.
Ngu, T.T., Easton, A., and Stillman, M.J. (2008). Kinetic analysis of arsenic-metalation of human metallothionein: significance of the two-domain structure. J Am Chem Soc 130, 17016-17028.
Ngu, T.T., and Stillman, M.J. (2006). Arsenic binding to human metallothionein. J Am Chem Soc 128, 12473-12483.
Nguyen, T., Sherratt, P.J., and Pickett, C.B. (2003). Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43, 233-260.
Nielsen, A.E., Bohr, A., and Penkowa, M. (2006). The Balance between Life and Death of Cells: Roles of Metallothioneins. Biomarker Insights 1, 99-111.
Orlowski, C., and Piotrowski, J.K. (1998). Metal composition of human hepatic and renal metallothionein. Biol Trace Elem Res 65, 133-141.
Orrenius, S., Gogvadze, V., and Zhivotovsky, B. (2007). Mitochondrial oxidative stress: implications for cell death. Annu Rev Pharmacol Toxicol 47, 143-183.
Orrenius, S., Gogvadze, V., and Zhivotovsky, B. (2015). Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun 460, 72-81.
Ouyang, L., Shi, Z., Zhao, S., Wang, F.T., Zhou, T.T., Liu, B., and Bao, J.K. (2012). Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45, 487-498.
Palmiter, R.D., Findley, S.D., Whitmore, T.E., and Durnam, D.M. (1992). MT-III, a brain-specific member of the metallothionein gene family. P Natl Acad Sci USA 89, 6333-6337.
Partridge, M.A., Huang, S.X., Hernandez-Rosa, E., Davidson, M.M., and Hei, T.K. (2007). Arsenic induced mitochondrial DNA damage and altered mitochondrial oxidative function: implications for genotoxic mechanisms in mammalian cells. Cancer Res 67, 5239-5247.
Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X.H., Mizushima, N., Packer, M., Schneider, M.D., and Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927-939.
Pennarun, B., Meijer, A., de Vries, E.G., Kleibeuker, J.H., Kruyt, F., and de Jong, S. (2010). Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim Biophys Acta 1805, 123-140.
Pierce, G.B., Parchment, R.E., and Lewellyn, A.L. (1991). Hydrogen peroxide as a mediator of programmed cell death in the blastocyst. Differentiation 46, 181-186.
Prindull, G. (1995). Apoptosis in the embryo and tumorigenesis. Eur J Cancer 31A, 116-123.
Pulido, M.D., and Parrish, A.R. (2003). Metal-induced apoptosis: mechanisms. Mutat Res 533, 227-241.
Qu, W., Pi, J., and Waalkes, M.P. (2013). Metallothionein blocks oxidative DNA damage in vitro. Archives of toxicology 87, 311-321.
Qu, W., and Waalkes, M.P. (2015). Metallothionein Blocks Oxidative DNA Damage Induced by Acute Inorganic Arsenic Exposure. Toxicol Appl Pharm 282, 267-274.
Quaife, C.J., Findley, S.D., Erickson, J.C., Froelick, G.J., Kelly, E.J., Zambrowicz, B.P., and Palmiter, R.D. (1994). Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 33, 7250-7259.
Redza-Dutordoir, M., and Averill-Bates, D.A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863, 2977-2992.
Reynaert, N.L., Ckless, K., Guala, A.S., Wouters, E.F., van der Vliet, A., and Janssen-Heininger, Y.M. (2006). In situ detection of S-glutathionylated proteins following glutaredoxin-1 catalyzed cysteine derivatization. Biochim Biophys Acta 1760, 380-387.
Reynaert, N.L., Wouters, E.F., and Janssen-Heininger, Y.M. (2007). Modulation of glutaredoxin-1 expression in a mouse model of allergic airway disease. Am J Respir Cell Mol Biol 36, 147-151.
Roesijadi, G. (1996). Metallothionein and its role in toxic metal regulation. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology 113, 117-123.
Rogov, V., Dotsch, V., Johansen, T., and Kirkin, V. (2014). Interactions between Autophagy Receptors and Ubiquitin-like Proteins Form the Molecular Basis for Selective Autophagy. Mol Cell 53, 167-178.
Romach, E.H., Zhao, C.Q., Del Razo, L.M., Cebrian, M.E., and Waalkes, M.P. (2000). Studies on the mechanisms of arsenic-induced self tolerance developed in liver epithelial cells through continuous low-level arsenite exposure. Toxicol Sci 54, 500-508.
Romero-Isart, N., and Vasak, M. (2002). Advances in the structure and chemistry of metallothioneins. J Inorg Biochem 88, 388-396.
Rubinsztein, D.C., Shpilka, T., and Elazar, Z. (2012). Mechanisms of autophagosome biogenesis. Curr Biol 22, R29-34.
Ruiz-Ramos, R., Lopez-Carrillo, L., Rios-Perez, A.D., De Vizcaya-Ruiz, A., and Cebrian, M.E. (2009). Sodium arsenite induces ROS generation, DNA oxidative damage, HO-1 and c-Myc proteins, NF-kappaB activation and cell proliferation in human breast cancer MCF-7 cells. Mutat Res 674, 109-115.
Russo, M., Mupo, A., Spagnuolo, C., and Russo, G.L. (2010). Exploring death receptor pathways as selective targets in cancer therapy. Biochemical Pharmacology 80, 674-682.
Ruttkay-Nedecky, B., Nejdl, L., Gumulec, J., Zitka, O., Masarik, M., Eckschlager, T., Stiborova, M., Adam, V., and Kizek, R. (2013). The role of metallothionein in oxidative stress. Int J Mol Sci 14, 6044-6066.
Sakulsak, N. (2012). Metallothionein: An Overview on its Metal Homeostatic Regulation in Mammals. Int J Morphol 30, 1007-1012.
Sato, M., and Kondoh, M. (2002). Recent studies on metallothionein: protection against toxicity of heavy metals and oxygen free radicals. Tohoku J Exp Med 196, 9-22.
Savill, J., and Fadok, V. (2000). Corpse clearance defines the meaning of cell death. Nature 407, 784-788.
Scherz-Shouval, R., and Elazar, Z. (2011). Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36, 30-38.
Seguin, C. (1991). A nuclear factor requires Zn2+ to bind a regulatory MRE element of the mouse gene encoding metallothionein-1. Gene 97, 295-300.
Shi, H., Shi, X., and Liu, K.J. (2004). Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255, 67-78.
Shih, C.M., Wu, J.S., Ko, W.C., Wang, L.F., Wei, Y.H., Liang, H.F., Chen, Y.C., and Chen, C.T. (2003). Mitochondria-mediated caspase-independent apoptosis induced by cadmium in normal human lung cells. J Cell Biochem 89, 335-347.
Simpkins, C.O. (2000). Metallothionein in human disease. Cell Mol Biol (Noisy-le-grand) 46, 465-488.
Smirnova, I.V., Bittel, D.C., Ravindra, R., Jiang, H., and Andrews, G.K. (2000). Zinc and Cadmium Can Promote Rapid Nuclear Translocation of Metal Response Element-binding Transcription Factor-1. J Biol Chem 275, 9377-9384.
Son, Y.O., Lee, J.C., Hitron, J.A., Pan, J., Zhang, Z., and Shi, X. (2010). Cadmium induces intracellular Ca2+- and H2O2-dependent apoptosis through JNK- and p53-mediated pathways in skin epidermal cell line. Toxicol Sci 113, 127-137.
Sou, Y., Tanida, I., Komatsu, M., Ueno, T., and Kominami, E. (2006). Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. J Biol Chem 281, 3017-3024.
Stallings, R.L., Crawford, B.D., Tobey, R.A., Tesmer, J., and Hildebrand, C.E. (1986). 5-Azacytidine-induced conversion to cadmium resistance correlates with early S phase replication of inactive metallothionein genes in synchronized CHO cells. Somat Cell Mol Genet 12, 423-432.
Sun, S.Y. (2010). N-acetylcysteine, reactive oxygen species and beyond. Cancer Biol Ther 9, 109-110.
Swindell, W.R. (2011). Metallothionein and the biology of aging. Ageing Res Rev 10, 132-145.
Tanida, I., Ueno, T., and Kominami, E. (2008). LC3 and Autophagy. Methods Mol Biol 445, 77-88.
Tanida, I., and Waguri, S. (2010). Measurement of autophagy in cells and tissues. Methods Mol Biol 648, 193-214.
Thornalley, P.J., and Vasak, M. (1985). Possible role for metallothionein in protection against radiation-induced oxidative stress. Kinetics and mechanism of its reaction with superoxide and hydroxyl radicals. Biochim Biophys Acta 827, 36-44.
Tio, L., Villarreal, L., Atrian, S., and Capdevila, M. (2004). Functional differentiation in the mammalian metallothionein gene family: metal binding features of mouse MT4 and comparison with its paralog MT1. J Biol Chem 279, 24403-24413.
Tripathi, R.M., Raghunath, R., Mahapatra, S., and Sadasivan, S. (2001). Blood lead and its effect on Cd, Cu, Zn, Fe and hemoglobin levels of children. Sci Total Environ 277, 161-168.
Tsuji, S., Kobayashi, H., Uchida, Y., Ihara, Y., and Miyatake, T. (1992). Molecular cloning of human growth inhibitory factor cDNA and its down-regulation in Alzheimer's disease. The EMBO Journal 11, 4843-4850.
Uchida, Y., Takio, K., Titani, K., Ihara, Y., and Tomonaga, M. (1991). The growth inhibitory factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein. Neuron 7, 337-347.
Vasak, M. (2005). Advances in metallothionein structure and functions. J Trace Elem Med Biol 19, 13-17.
Vasak, M., and Hasler, D.W. (2000). Metallothioneins: new functional and structural insights. Curr Opin Chem Biol 4, 177-183.
Vasak, M., and Meloni, G. (2011). Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem 16, 1067-1078.
Waalkes, M.P., Liu, J., Ward, J.M., and Diwan, B.A. (2004). Mechanisms underlying arsenic carcinogenesis: hypersensitivity of mice exposed to inorganic arsenic during gestation. Toxicology 198, 31-38.
Wang, T.S., Kuo, C.F., Jan, K.Y., and Huang, H. (1996). Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol 169, 256-268.
Wang, Y., Lorenzi, I., Georgiev, O., and Schaffner, W. (2004a). Metal-responsive transcription factor-1 (MTF-1) selects different types of metal response elements at low vs. high zinc concentration. In Biological Chemistry, pp. 623.
Wang, Y., Wimmer, U., Lichtlen, P., Inderbitzin, D., Stieger, B., Meier, P.J., Hunziker, L., Stallmach, T., Forrer, R., RÜLicke, T., et al. (2004b). Metal-responsive transcription factor-1 (MTF-1) is essential for embryonic liver development and heavy metal detoxification in the adult liver. The FASEB Journal 18, 1071-1079.
Warner, H.R. (1994). Superoxide dismutase, aging, and degenerative disease. Free Radic Biol Med 17, 249-258.
Watanabe, Y., and Tanaka, M. (2011). p62/SQSTM1 in autophagic clearance of a non-ubiquitylated substrate. J Cell Sci 124, 2692-2701.
Wei, Y.J., Pattingre, S., Sinha, S., Bassik, M., and Levine, B. (2008). JNK1-mediated phosphorylation of BcI-2 regulates starvation-induced autophagy. Mol Cell 30, 678-688.
White, E., Shannon, J.S., and Patterson, R.E. (1997). Relationship between vitamin and calcium supplement use and colon cancer. Cancer Epidemiology Biomarkers & Prevention 6, 769-774.
Yang, J.-L., Chao, J.-I., and Lin, J.-G. (1996). Reactive Oxygen Species May Participate in the Mutagenicity and Mutational Spectrum of Cadmium in Chinese Hamster Ovary-K1 Cells. Chemical Research in Toxicology 9, 1360-1367.
Yu, C.W., Chen, H.C., and Lin, L.Y. (1998). Transcription of metallothionein isoform promoters is differentially regulated in cadmium-sensitive and -resistant CHO cells. J Cell Biochem 68, 174-185.
Yuan, C., Kadiiska, M., Achanzar, W.E., Mason, R.P., and Waalkes, M.P. (2000). Possible role of caspase-3 inhibition in cadmium-induced blockage of apoptosis. Toxicol Appl Pharmacol 164, 321-329.
Zafarullah, M., Li, W.Q., Sylvester, J., and Ahmad, M. (2003). Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60, 6-20.
Zhang, B., Georgiev, O., Hagmann, M., Günes, Ç., Cramer, M., Faller, P., Vasák, M., and Schaffner, W. (2003). Activity of Metal-Responsive Transcription Factor 1 by Toxic Heavy Metals and H(2)O(2) In Vitro Is Modulated by Metallothionein. Molecular and Cellular Biology 23, 8471-8485.
Zhang, D.D., Dodson, M., Jiang, T., Lu, Y., and Wong, P.K. (2016). Arsenic blocks autophagy by interfering with the autophagosome-lysosome fusion. Toxicol Lett 259, S172-S172.
Zhou, P., Kalakonda, N., and Comenzo, R.L. (2005). Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br J Haematol 128, 636-644.
Zhu, M., Baek, H., Liu, R., Song, A., Lam, K., and Lau, D. (2009). LAS0811: from combinatorial chemistry to activation of antioxidant response element. J Biomed Biotechnol 2009, 420194.
Zhu, X.-X., Yao, X.-F., Jiang, L.-P., Geng, C.-Y., Zhong, L.-F., Yang, G., Zheng, B.-L., and Sun, X.-C. (2014). Sodium arsenite induces ROS-dependent autophagic cell death in pancreatic β-cells. Food and Chemical Toxicology 70, 144-150.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *