帳號:guest(3.133.113.72)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱裕樟
作者(外文):Chiu, Yu-Chang
論文名稱(中文):應用深度學習之電子商務直接行銷方法:基於商品評論之文字生成模型
論文名稱(外文):A Direct Marketing Approach with Deep Learning in E-Commerce: Review-Based Text Generation Model
指導教授(中文):洪世章
指導教授(外文):Hung, Shih-Chang
口試委員(中文):曾詠青
陳宗權
口試委員(外文):Tseng, Yung-Ching
Chen, Tsung-Chuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:科技管理研究所
學號:105073510
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:17
中文關鍵詞:直接行銷深度學習文字生成
外文關鍵詞:Direct MarketingDeep LearningText Generation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:451
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
推薦系統是電子商務領域中一個活躍且成熟的應用,它用於預測用戶可能感興趣之商品,並向用戶推薦該商品以增加銷售。在實踐中,推薦商品通常僅以清單方式顯示在用戶頁面中,較不具備額外行銷手段。而本文嘗試提出一種基於文字生成系統並結合推薦商品之直接行銷方法,此文字生成系統使用亞馬遜電商平台上正面及幫助程度大之商品評論資料訓練Gated Recurrent Unit模型,模型學習訓練語料庫中之規律以自動生成文字。生成之文字用作直接行銷並與推薦商品共同呈現在用戶頁面或透過電子郵件及其他渠道推送。
Recommender system is an active and well-developed application in e-commerce industry. It serves to predict what a user might also be interested in other certain items and make recommendations of those items to the user for sales increase. In practice, the recommendations are usually made to the user in a list of item with direct link to the particular item. This paper propose an additional approach with natural language generation model generating text for direct marketing along with the recommended item. The text generation model applies Gated Recurrent Unit to automatically generate text based on sentimentally positive user reviews with the helpfulness above a set value from Amazon Review Datasets. The model learns from reviews which users find useful and outputs textual content regarding the quality features of the recommended product for advertising via e-mail and some other channels.
Abstract.................................1
摘要.....................................2
1. Introduction..........................4
2. Literature Review.....................5
2.1 Deep Learning........................5
2.2 Natural Language Generation..........6
3. Methodology...........................7
3.1 Datasets.............................7
3.2 Modeling Approach....................8
4. Result................................12
5. Discussion............................14
References...............................16
1. Botvinick, M. M., & Plaut, D. C. (2006). Short-term memory for serial order: a recurrent neural network model. Psychological review, 113(2), 201.
2. Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.
3. Cravens, D. W., & Piercy, N. (2003). Strategic marketing (Vol. 8). Boston, MA: McGraw-Hill Irwin.
4. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
5. He, R., & McAuley, J. (2016, April). Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In proceedings of the 25th international conference on world wide web (pp. 507-517). International World Wide Web Conferences Steering Committee.
6. Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies.
7. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.
8. Pascanu, R., Mikolov, T., & Bengio, Y. (2013, February). On the difficulty of training recurrent neural networks. In International Conference on Machine Learning (pp. 1310-1318).
9. Reiter, E., & Dale, R. (2000). Building natural language generation systems. Cambridge university press.
10. Ramos-Soto, A., Bugarín, A., & Barro, S. (2016). On the role of linguistic descriptions of data in the building of natural language generation systems. Fuzzy Sets and Systems, 285, 31-51.
11. Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013, February). On the importance of initialization and momentum in deep learning. In International conference on machine learning(pp. 1139-1147).
12. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
13. Xie, Z. (2017). Neural Text Generation: A Practical Guide. arXiv preprint arXiv:1711.09534.
14. Yao, Y., Viswanath, B., Cryan, J., Zheng, H., & Zhao, B. Y. (2017, October). Automated Crowdturfing Attacks and Defenses in Online Review Systems. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security(pp. 1143-1158). ACM.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *