帳號:guest(18.224.69.44)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉修為
作者(外文):Yeh, Hsiu-Wei
論文名稱(中文):交易策略、股價走勢和石油價格是否有助於匯率預測?
論文名稱(外文):Are trading strategies, stock price, and oil price helpful in exchange rate forecasting?
指導教授(中文):林靜儀
指導教授(外文):Lin, Ching-Yi
口試委員(中文):祁玉蘭
李宜
口試委員(外文):Chyi, Yih-Luan
Lee, Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:經濟學系
學號:105072524
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:36
中文關鍵詞:股價石油價格貝氏決策樹高斯迴歸模型隨機漫步匯率預測
外文關鍵詞:stock priceoil priceBayesian Treed Gaussian Process modelRandom Walkexchange rate forecasting
相關次數:
  • 推薦推薦:0
  • 點閱點閱:310
  • 評分評分:*****
  • 下載下載:47
  • 收藏收藏:0
為了提升匯率預測能力,本論文利用 Bayesian Treed Gaussian Process 模,調整交易策略的計算方式,並在解釋變數中加入經濟指標進行匯率預測。本文研究方向分為兩大部分,第一部分是探討在國家分類標準不同的情況下,利用計算取得的交易策略進行匯率預測,匯率預測能力有沒有差異;第二部分是研究經濟指標作為解釋變數,是否有助於提升匯率預測能力。本研究之主要解釋變數為交易策略和經濟指標,並利用 Directional Accuracy、Excess Predictability、Annual Percentage Rate 和 Sharpe Ratio 四種檢驗方法衡量匯率預測能力。研究結果發現,國家分類標準不同並不影響匯率預測能力,然而經濟指標皆有助於提升匯率預測能力。本模型的預測結果優於 Random Walk 和 Random Walk with Drift,尤其在交易策略、股價和石油價格同時作為解釋變數時,其匯率預測能力最佳。
In order to improve the exchange rate forecasting ability, we use the Bayesian Treed Gaussian Process model with different methods to obtain different trading strategies, and employ some kinds of economic variables as fundamentals for exchange rate forecasting. Therefore, the aspects of our research is divided into two parts. The first part is whether there is any difference in exchange rate forecasting ability when the trading strategies obtained by the different classification standards of countries. The second part is whether economic variables as fundamentals will help increase the exchange rate forecasting ability. Directional Accuracy、Excess Predictability、 Annual Percentage Rate and Sharpe Ratio are used to measure the exchange rate forecasting ability. The paper finds that different classification standards of countries does not affect the exchange rate forecasting ability; economic variables all help to improve the exchange rate forecasting ability. We also find that t he forecasting results of the Bayesian Treed Gaussian Process model dominate those of Random Walk and Random Walk with Drift. In particular, the exchange rate forecasting ability is the best when we employ trading strategies, stock prices and oil prices as fundamentals.
目錄
中文摘要.........................................................................................................................i
Abstract.....................................................................................................................ii
第一章 緒論................................................................................................................1
第一節 研究背景................................................................................................1
第二節 研究目的................................................................................................2
第三節 研究架構................................................................................................3
第二章 文獻回顧........................................................................................................4
第三章 研究方法........................................................................................................9
第一節 資料選擇................................................................................................9
第二節 模型介紹..............................................................................................13
第三節 檢驗方法..............................................................................................17
第四章 研究結果......................................................................................................20
第一節 國家分類標準不同之匯率預測結果..................................................21
第二節 股價之匯率預測結果..........................................................................26
第三節 石油價格之匯率預測結果..................................................................29
第四節 股價與石油價格之匯率預測結果......................................................32
第五章 結論..............................................................................................................34
參考資料......................................................................................................................35
表目錄
表 1 美國主要貿易國家.........................................................................................11
表 2 國家分類標準不同之匯率預測結果.............................................................23
表 3 原文獻之匯率預測結果.................................................................................25
表 4 股價之匯率預測結果.....................................................................................28
表 5 石油價格之匯率預測結果.............................................................................31
表 6 股價和石油價格之匯率預測結果.................................................................33
1. Anastasakis, L., & Mort, N. (2009). Exchange rate forecasting using a combined parametric and nonparametric self-organising modelling approach. Expert Systems with Applications, 36(10), 12001-12011.
2. Anatolyev, S., & Gerko, A. (2005). A trading approach to testing for predictability. Journal of Business & Economic Statistics, 23(4), 455-461.
3. Basher, S. A., Haug, A. A., & Sadorsky, P. (2012). Oil prices, exchange rates and emerging stock markets. Energy Economics, 34(1), 227-240.
4. Breiman, L. (2017). Classification and regression trees. Routledge.
5. Chen, A. S., & Leung, M. T. (2004). Regression neural network for error correction in foreign exchange forecasting and trading. Computers & Operations Research, 31(7), 1049-1068.
6. Clark, T. E., & West, K. D. (2006). Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis. Journal of Econometrics, 135(1-2), 155-186.
7. Gramacy, R. B., & Lee, H. K. H. (2008). Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association, 103(483), 1119-1130.
8. Khashei, M., & Bijari, M. (2010). An artificial neural network (p, d, q) model for timeseries forecasting. Expert Systems with applications, 37(1), 479-489.
9. Kilian, L., & Taylor, M. P. (2003). Why is it so difficult to beat the random walk forecast of exchange rates?. Journal of International Economics, 60(1), 85-107.
10. Lo, A. W. (2002). The statistics of Sharpe ratios. Financial analysts journal, 58(4), 36-52.
11. Lustig, H., Roussanov, N., & Verdelhan, A. (2011). Common risk factors in currency markets. The Review of Financial Studies, 24(11), 3731-3777.
12. Malone, S. W., Gramacy, R. B., & ter Horst, E. (2016). Timing foreign exchange markets. Econometrics, 4(1), 15. 36
13. Mark, N. C. (1995). Exchange rates and fundamentals: Evidence on long-horizon predictability. The American Economic Review, 201-218.
14. Meese, R. A., & Rogoff, K. (1983). Empirical exchange rate models of the seventies: Do they fit out of sample?. Journal of international economics, 14(1-2), 3-24.
15. Molodtsova, T., & Papell, D. H. (2009). Out-of-sample exchange rate predictability with Taylor rule fundamentals. Journal of international economics, 77(2), 167-180.
16. Philip, A. A., Taofiki, A. A., & Bidemi, A. A. (2011). Artificial neural network model for forecasting foreign exchange rate. World of Computer Science and Information Technology Journal, 1(3), 110-118.
17. Pilbeam, K., & Langeland, K. N. (2015). Forecasting exchange rate volatility: GARCH models versus implied volatility forecasts. International Economics and Economic Policy, 12(1), 127-142.
18. Wu, C. C., Chung, H., & Chang, Y. H. (2012). The economic value of comovement between oil price and exchange rate using copula-based GARCH models. Energy Economics, 34(1), 270-282.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *