帳號:guest(3.129.25.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):施政佑
作者(外文):Shih, Jheng-You
論文名稱(中文):機率密度預測之方法比較 - 以台積電ADR價格為例
論文名稱(外文):The comparison of density forecasts for 1-day ahead stock price of TSMC ADR, obtained from high-frequency returns
指導教授(中文):曾祺峰
指導教授(外文):Tzeng, Chi-Feng
口試委員(中文):冼芻蕘
楊睿中
口試委員(外文):Sin, Chor-Yiu
Yang, Jui-Chung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:計量財務金融學系
學號:105071514
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:40
中文關鍵詞:密度預測實現波動率無母數轉換異質自我迴歸分位數迴歸
外文關鍵詞:density forecastrealized variancenonparametric transformationheterogeneous autoregressionquantile regression
相關次數:
  • 推薦推薦:0
  • 點閱點閱:254
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文比較了台積電美國存託憑證(TSMC ADR)股票價格在不同密度預測方法下的準確性。我們主要採用兩種方法來預測隔天的股票價格。

在第一種方法中,受Fan,Taylor和Sandri(2017)的啟發,我們將5分鐘高頻報酬帶入實現波動率的異質自我迴歸模型(HAR-RV model)來獲得密度預測,並將密度預測從風險中立的機率測度轉換到真實世界的機率測度。 在第二種方法中,根據ŽIKEŠ和BARUNÍK(2016),我們將實現波動率的連續分量和跳躍分量帶入線性分位數迴歸模型(LQR model)來獲得密度預測。

在獲得兩個模型的密度預測之後,我們計算每個密度的對數似然分數,用來分辨哪個密度預測方法可以較準確地預測出隔天的股票價格。

我們的貢獻是為投資者、決策者和管理者提供良好的股價預測方法,讓他們在做出決策之前能有可以參考的依據。
The paper compares the accuracy of density forecasts for TSMC ADR stock prices. We majorly adopt two methods to forecast the next day stock price.

In the first method, inspired by Fan, Taylor and Sandri (2017), we consider HAR-RV model with 5-min high-frequency returns to obtain density forecast, and transform the density from risk-neutral measure to real-world measure. In the second method, following ŽIKEŠ and BARUNÍK (2016), we use LQR model with the continuous- and jump- components of realized volatility to obtain the density forecast.

After having the densities of the two models, we calculate the log-likelihood scores of each density in order to tell which density forecasting method is more accuracy in forecasting the next day stock price.

Our contribution is to provide a good forecasting method for investors, policy makers, and managers as a reference before they make decisions.
摘要-----------------------------------------------------I
ABSTRACT------------------------------------------------II
Table of Contents--------------------------------------III
List of Figures-----------------------------------------IV
List of Tables-------------------------------------------V
1 INTRODUCTION-------------------------------------------1
2 METHODOLOGY--------------------------------------------7
2.1 Applied high-frequency returns into HAR-RV model-----7
2.2 Lognormal densities of HAR-RV model------------------9
2.3 Nonparametric transformations-----------------------10
2.4 Diagnostic test for densities of HAR-RV model-------13
2.5 Theoretical framework of LQR model------------------14
2.6 Densities of LQR model------------------------------15
2.7 Ranking---------------------------------------------17
3 DATA--------------------------------------------------19
3.1 High-frequency stock prices-------------------------19
3.2 Futures prices--------------------------------------20
4 EMPIRICAL RESULTS-------------------------------------21
4.1 Density forecasts of HAR-RV model-------------------21
4.2 Density forecasts of LQR model----------------------26
4.3 Log-likelihood comparisons--------------------------32
5 CONCLUSIONS-------------------------------------------36
REFERENCES----------------------------------------------38
Amisano, G., and Giacomini, R. (2007). Comparing density forecasts via weighted likelihood ratio tests. Journal of Business and Economic Statistics, Volume 25, Issue 2, 177-190.
Andersen, T. G., Bollerslev, T., and Diebold, F. X. (2007). Roughing it up: Including jump components in measuring, modeling and forecasting asset return volatility. Review of Economics and Statistics, Volume 89, Issue 4, 701-720.
Andersen,T. G., Bollerslev, T. and Diebold, F. X. (2009). Parametric and Nonparametric Volatility Measurement. In: L.P. Hansen and Y. Ait-Sahalia (eds.), Handbook of Financial Econometrics. Amsterdam: North-Holland.
Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2001). The distribution of realized stock return volatility. Journal of Financial Economics, Volume 61, Issue 1, 43-76.
Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling and Forecasting Realized Volatility. Econometrica, Volume 71, Issue 2, 579-625.
Andersen, T. G., Dobrev, D. and Schaumburg, E. (2012). Jump-Robust Volatility Estimation Using Nearest Neighbor Truncation. Journal of Econometrics, Volume 169, Issue 1, 75-93.
Bandi, F. M., and Russell, J. R. (2006). Separating microstructure noise from volatility. Journal of Financial Economics, Volume 79, Issue 3, 655-692.
Bao, Y., Lee, T.-H., and Saltoğlu, B. (2007). Comparing density forecast models. Journal of Forecasting, Volume26, Issue3, 203-225.
Cenesizoglu, T. and Timmerman , A. (2008). Is the Distribution of Stock Returns Predictable? San Diego: University of California.
Clements, M. P., Galvao ,A. B. and Kim , J. H. (2008). Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility. Journal of Empirical Finance, Volume 15, Issue 4, 729-750.
Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics, Volume 7, Issue 2, 174-196.
Engle, R. F. and Manganelli, S. (2004). Caviar: Conditional Autoregressive Value at Risk by Regression Quantiles. Journal of Business and Economic Statistics, Volume 22, Issue 4, 367-381.
Fan, R., Taylor, S. J. and Sandri, M. (2017). Density forecast comparisons for stock prices, obtained from high‐frequency returns and daily option prices. Journal of Futures Markets, Volume38, Issue1, 83-103.
Giacomini, R. and Komujer, I. (2005). Evaluation and Combination of Conditional Quantile Forecasts. Journal of Business and Economics Statistics, Volume 23, Issue 4, 416-431.
Hua, J. and Manzan S. (2013). Forecasting the return distribution using high-frequency volatility measures. Journal of Banking and Finance, Volume 37, Issue 11, 4381-4403.
Koenker, R. and Bassett, G. (1978). Regression Quantiles. Econometrica, Volume 46, 33-50.
Liu, L. Y., Patton, A. J., and Sheppard, K. (2015). Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. Journal of Econometrics, Volume 187, Issue 1, 293-311.
Liu, X., Shackleton, M. B., Taylor, S. J., and Xu, X. (2007). Closed-form transformations from risk-neutral to real-world densities. Journal of Banking and Finance, Volume 31, Issue 5, 1501-1520.
Maheu, J. M. and McCurdy, T. M. (2011). Do high-frequency measures of volatility improve forecasts of return distributions? Journal of Econometrics, Volume 160, Issue 1, 69-76.
Martens, M., and Zein, J. (2004). Predicting financial volatility: High-frequency time-series forecast vis-à-vis implied volatility. Journal of Futures Markets, Volume 24, Issue11, 1005-1028.
Shackleton, M. B., Taylor, S. J., and Yu, P. (2010). A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices. Journal of Banking and Finance, Volume 34, Issue 11, 2678-2693.
Tzeng, C.-F., Taylor, S. J., and Widdicks, M. (2016). Predictive Power of Option-Implied Densities from High-Frequency Data. Journal of Financial Studies, Volume 24, 1-24.
Yun, J. (2014). Out-of-sample density forecasts with affine jump diffusion models. Journal of Banking and Finance, Volume 47, 74-87.
Žikeš F., and Baruník J. (2016). Semi-parametric Conditional Quantile Models for Financial Returns and Realized Volatility. Journal of Financial Econometrics, Volume 14, Issue 1, 185-226.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *