|
1. 養水種電打破發電天花板? , Available from: http://pansci.asia/archives/107213. 2. 2017臺灣太陽能電池產業回顧與展望, Available from: https://www.iii.org.tw/focus/FocusDtl.aspx?f_type=1&f_sqno=2jpg8NN71B 3. 勢在必行,淺談太陽能電池產業, Available from: https://meethub.bnext.com.tw/talk/%E5%8B%A2%E5%9C%A8%E5%BF%85%E8%A1%8C%EF%BC%8C%E6%B7%BA%E8%AB%87%E5%8F%B0%E7%81%A3%E5%A4%AA%E9%99%BD%E8%83%BD%E7%94%A2%E6%A5%AD%EF%BD%9C%E5%A4%A7%E5%92%8C%E6%9C%89%E8%A9%B1%E8%AA%AA/ 4. 維基百科 太陽能電池, Available from: https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0 5. W. Shockley and H.J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells, ” Journal of Applied Physics, 1961, 32(3): pp. 510-519. 6. S. Zhong, and et al., “Influence of the texturing structure on the properties of black silicon solar cell, ” Solar Energy Materials and Solar Cells, 2013, 108: pp. 200-204. 7. Z. Ying, and et al., “High-performance black multicrystalline silicon solar cells by a highly simplified metal-catalyzed chemical etching method, ” IEEE Journal of Photovoltaics, 2016, 6(4): pp. 888-893. 8. S. Wenham, “Buried-contact silicon solar cells,” Progress in Photovoltaics: Research and Applications, 1993, 1(1): pp. 3-10. 9. P. Verlinden, Photovoltaic Solar Energy from Fundamentals to Applications, Wiley library, 2017,pp. 68-72. 10. H. Savin, and et al., “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency, ” Nature Nanotechnology, 2015,10: pp. 624-629. 11. Z. Jianhua, W. Aihua, and G.M. Alshi, “24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates, ” Progress in Photovoltaics: Research and Applications, 1999,7(6): pp. 471-474. 12. M. Taguchi, and et al., “24.7% Record efficiency HIT solar cell on thin silicon wafer, ” IEEE Journal of Photovoltaics, 2014, 4(1): pp. 96-99. 13. A. Aberle, “Surface passivation of crystalline silicon solar cells: a review, ”Progress in Photovoltaics: Research and Applications, 2000, 8(5): pp. 473-487. 14. M. Shinsuke, and et al., “High quality aluminum oxide passivation layer for crystalline silicon solar cells deposited by parallel-plate plasma-enhanced chemical vapor deposition, ” Applied Physics Express, 2010, 3(1): pp. 012301-012311. 15. B. Hoex, and et al., “ Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3, ” Applied Physics Letters, 2007,91(11): pp. 107-112. 16. P. Saint, and et al., “High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide, ” IEEE Electron Device Letters, 2010, 31(7): pp. 695-697. 17. B. Hoex, and et al., “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3, ” Applied Physics Letters, 2006, 89(4): pp. 42-48. 18. 維基百科 sol-gel method , Available from: https://zh.wikipedia.org/wiki/%E6%BA%B6%E8%86%A0%E5%87%9D%E8%86%A0 19. H. Xiao, and et al., “ Excellent passivation of p-Type Si surface by Sol-Gel Al2O3 films, ” Chinese Physics Letters, 2009, 26(8): pp. 88-102. 20. J. Sun, and Y.C. Sun, “ Chemical liquid phase deposition of thin aluminum oxide films,”Chinese Journal of Chemistry, 2004, 22(7): pp. 661-667. 21. 陳柏宏,「濕式氧化法形成Al2O3鈍化層之背面具局部接觸結構矽晶太陽能電池研究」,國立清華大學光電工程研究所碩士班論文,民國一百零五年八月。 22. 吳昆叡,「陽極氧化鋁用於背表面鈍化之太陽能電池研究」,國立清華大學光電工程研究所碩士班論文,民國一百零五年八月。 23. F. Li, L. Zhang, and R.M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,”Chemistry of Materials,1998, 10(9): pp. 2470-2480. 24. M.J. Kerr, and et al., “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide, ” Journal of Applied Physics, 2001, 89(7): pp. 3821-3826. 25. B. Hoex, and et al., “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3, ” Journal of Applied Physics, 2008, 104(11): pp. 113-118. 26. K. Kimoto, and et al., “Coordination and interface analysis of atomic-layer-deposition Al2O3 on Si (001) using energy-loss near-edge structures, ” Applied Physics Letters, 2003, 83(21): pp. 4306-4308. 27. G. Lucovsky, “ A chemical bonding model for the native oxides of the III–V compound semiconductors, ” Journal of Vacuum Science and Technology, 1981, 19(3): pp. 456-462. 28. J.G. Fossum, “ Physical operation of back-surface-field silicon solar cells, ” IEEE Transactions on Electron Devices, 1977,24(4): pp. 322-325. 29. Back surface field , Available from: http://pvcdrom.pveducation.org/DESIGN/SURF_MIN.HTM. 30. 維基百科 半導體能隙結構, Available from: https://zh.wikipedia.org/wiki/File:In_direct-Bandgap. 31. D.A. Neamen, Semiconductor physics and devices : basic principles, 2nd edition, Mcgraw Hill Higher Education,2009, pp. 78-80. 32. 鼎昕科技 太陽電池測試, Available from: http://www.toptical.com.tw/web/SG?pageID=41208. 33. 維基百科 RCA clean, Available from: https://en.wikipedia.org/wiki/RCA_clean. 34. RCA clean製程, Available from: http://www.gptc.com.tw/tw/product/product_detail-16. 35. P.K. Singh, and et al., “ Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions, ” Solar Energy Materials and Solar Cells, 2001, 70(1): pp. 103-113. 36. J. Oh, H.C. Yuan, and H.M. Branz, “ An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures, ” Nature Nanotechnology, 2012, 7: pp. 743-755. 37. H. Jansen, and et al., “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control, ” Journal of Micromechanics and Microengineering, 1995, 5(2): pp. 115-121. 38. 選擇性射極矽晶太陽電池技術介紹, Available from: http://www.materialsnet.com.tw/DocView.aspx?id=8559. 39. F. Duerinckx, and J. Szlufcik, “Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride,” Solar Energy Materials and Solar Cells, 2002. 72(1): pp. 231-246. 40. 維基百科 X射線光電子能譜學, Available from: https://zh.wikipedia.org/wiki/X%E5%B0%84%E7%BA%BF%E5%85%89%E7%94%B5%E5%AD%90%E8%83%BD%E8%B0%B1%E5%AD%A6. 41. 維基百科 掃描電子顯微鏡, Available from: https://zh.wikipedia.org/wiki/%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C. 42. 成功大學奈微米中心 電子束蒸鍍機 E-beam Evaporator, Available from: http://cmnst.ncku.edu.tw/files/15-1023-159877,c17606-1.php?Lang=zh-tw. 43. K. Matsunaga, and et al., “ First-principles calculations of intrinsic defects ,” Physical Review, 2003, 68(8): pp. 85-110. 44. 功能性粉末 奈米級alpha氧化鋁-氧化鋁粉體, Available from: https://ejournal.stpi.narl.org.tw/sd/download?source=9512/9512-02 45. 百度文庫 Sinton WCT-120 manual, Available from: https://wenku.baidu.com/view/c87b89cc51e79b8968022667.html. 46. 氫型陽離子交樹脂, Available from: https://htkps.wordpress.com/2010/09/28/%E6%B0%AB%E5%9E%8B%E9%99%BD%E9%9B%A2%E5%AD%90%E4%BA%A4%E6%8F%9B%E6%A8%B9%E8%84%82%E6%98%AF%E4%BB%80%E9%BA%BC/. 47. 王教瑋,「以鋁漿料共燒結形成背部射極之n型太陽電池研究」,國立清華大學光電工程研究所碩士班論文,民國一百零六年八月。
48. D. Macdonald, and L.J. Geerligs, “ Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon ,” Applied Physics Letters, 2004, 85(18): pp. 4061-4063.
|