帳號:guest(18.220.1.11)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林嘉柏
作者(外文):Lin, Chia-Po
論文名稱(中文):使用氫氧化鉀與氫氧化鋁溶液生長氧化鋁薄膜作為PERC架構太陽能電池背部鈍化層之研究
論文名稱(外文):PERC Silicon Solar Cell with Rear Side Passivation Layer of AlOx Formed by Coating a Mixture of KOH Solution and Al(OH)3
指導教授(中文):王立康
指導教授(外文):Wang, Li-Karn
口試委員(中文):甘炯耀
陳昇暉
口試委員(外文):Gan, Jiong-Yao
Chen, Sheng-Hui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:105066540
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:氧化鋁薄膜鈍化層濕式化學製程氫氧化鋁氫氧化鉀
外文關鍵詞:aluminum oxide layerpassivation layerwet chemical methodaluminum hydroxidepotassium hydroxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:101
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究以濕式化學製程的方式生長氧化鋁薄膜,作為PERC多晶矽太陽能電池背部的鈍化層,目的為取代業界以ALD或PECVD等真空機台技術。
實驗分為兩個部分,第一部份為濕式化學生長氧化鋁薄膜,以高濃度的氫氧化鉀溶液 (KOH) 與氫氧化鋁 (Al(OH)3) 粉末混和後,可以得到四羥基合鋁酸鹽水溶液,經過陽離子交換樹脂置換掉溶液中的鉀離子(K+) 後,接以適當的溫度與時間進行退火,可得到氧化鋁薄膜。為了驗證所生長的氧化層薄膜的鈍化效果,我們以 WCT-120 量測找出最佳的少數載子生命週期提升效果,佐以XPS的結果確保我們有形成氧化鋁薄膜。
第二部份,以此氧化鋁薄膜作為背部鈍化層,我們製作PERC多晶矽太陽能電池元件,找出最佳的電極燒結溫度與時間,獲取最佳的I-V參數,輔以SEM觀察背部BSF的厚度,以及利用反射率積分球測量電池表面的反射率。最後我們可得到效率12.73%的PERC太陽電池。
Our research is to develop a novel method for growing aluminum oxide AlOx as rear side passivation layer of PERC silicon solar cell by wet chemical process. The purpose of this research is to replace the current techniques like ALD and PECVD by a more cost-effective and simpler method.
First part of the experiment is to grow and coat the aluminum oxide layer on the rear side of the wafer. We put Al(OH)3 powder and KOH solution together and then obtained a non-colored solution. Later, we filtered the as-prepared solution by using ion exchange resin in order to remove the K+ ions. Finally, after an appropriate time and temperature in an annealing process, we got our aluminum oxide layer. We then examined the passivation effect by measuring the lifetime gross. We had our aluminum oxide layer undergo an XPS test to make sure the depth profile of the thin layer is fine.
For the second part of the experiment, we used our aluminum oxide layer as the rear side passivation layer of a PERC multi-crystalline silicon solar cell. After screen-printing and co-firing steps for the electrodes on the front and rear sides, we used SEM to check the thickness of BSF layer produced, and utilized the EQE test machine and the integrating sphere for reflectance measurement to characterize the cell properties. Finally, we got a conversion efficiency of 12.73% for the PERC silicon solar cell.
目錄
致謝 i
摘要 ii
Abstract iii
圖目錄 vii
表目錄 x
第一章 序論 1
1.1 前言 1
1.2 太陽能電池發展 2
1.3 文獻回顧 7
1.4 研究動機 10
1.5 論文架構 10
第二章 基本原理 11
2.1 氧化鋁的鈍化原理 11
2.2 背電場BSF的鈍化原理 13
2.3 半導體物理簡介 14
2.3-1 矽的能帶結構 14
2.3-2 本質半導體與外質半導體 16
2.3-3 p-n接面 17
2.4 太陽能電池元件物理 19
2.4-1 太陽光譜 19
2.4-2 太陽能電池等效電路及參數 21
第三章 實驗規劃與流程 23
3.1 實驗架構 23
3.2 電池製作流程 25
3.2-1 RCA clean 26
3.2-2 表面粗糙化 27
3.2-3 磷擴散及磷玻璃去除 28
3.2-4 抗反射層沉積 29
3.2-5 背部氧化鋁鈍化層生長 29
3.2-6 網印電極 30
3.2-7 共燒結 31
3.2-8 背面蒸鍍鋁金屬電極 32
3.2-9 邊緣切割絕緣 32
3.3 量測儀器 33
第四章 實驗量測與討論 36
4.1 氧化鋁薄膜的生長 36
4.1-1 少數載子生命週期量測 36
4.1-2 X光光電子能譜儀 (XPS) 氧化鋁薄膜縱深分析 46
4.2 PERC電池的製作 49
4.2-1 SEM觀測電池背部BSF厚度 49
4.2-2 稀釋比例1:40的氧化鋁薄膜鈍化效果 53
4.2-3 電池的IV電性量測 54
第五章 結論 64
第六章 參考文獻 66

1. 養水種電打破發電天花板? , Available from: http://pansci.asia/archives/107213.
2. 2017臺灣太陽能電池產業回顧與展望, Available from:
https://www.iii.org.tw/focus/FocusDtl.aspx?f_type=1&f_sqno=2jpg8NN71B
3. 勢在必行,淺談太陽能電池產業, Available from: https://meethub.bnext.com.tw/talk/%E5%8B%A2%E5%9C%A8%E5%BF%85%E8%A1%8C%EF%BC%8C%E6%B7%BA%E8%AB%87%E5%8F%B0%E7%81%A3%E5%A4%AA%E9%99%BD%E8%83%BD%E7%94%A2%E6%A5%AD%EF%BD%9C%E5%A4%A7%E5%92%8C%E6%9C%89%E8%A9%B1%E8%AA%AA/
4. 維基百科 太陽能電池, Available from: https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0
5. W. Shockley and H.J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells, ” Journal of Applied Physics, 1961, 32(3): pp. 510-519.
6. S. Zhong, and et al., “Influence of the texturing structure on the properties of black silicon solar cell, ” Solar Energy Materials and Solar Cells, 2013, 108: pp. 200-204.
7. Z. Ying, and et al., “High-performance black multicrystalline silicon solar cells by a highly simplified metal-catalyzed chemical etching method, ” IEEE Journal of Photovoltaics, 2016, 6(4): pp. 888-893.
8. S. Wenham, “Buried-contact silicon solar cells,” Progress in Photovoltaics: Research and Applications, 1993, 1(1): pp. 3-10.
9. P. Verlinden, Photovoltaic Solar Energy from Fundamentals to Applications, Wiley library, 2017,pp. 68-72.
10. H. Savin, and et al., “Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency, ” Nature Nanotechnology, 2015,10: pp. 624-629.
11. Z. Jianhua, W. Aihua, and G.M. Alshi, “24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates, ” Progress in Photovoltaics: Research and Applications, 1999,7(6): pp. 471-474.
12. M. Taguchi, and et al., “24.7% Record efficiency HIT solar cell on thin silicon wafer, ” IEEE Journal of Photovoltaics, 2014, 4(1): pp. 96-99.
13. A. Aberle, “Surface passivation of crystalline silicon solar cells: a review, ”Progress in Photovoltaics: Research and Applications, 2000, 8(5): pp. 473-487.
14. M. Shinsuke, and et al., “High quality aluminum oxide passivation layer for crystalline silicon solar cells deposited by parallel-plate plasma-enhanced chemical vapor deposition, ” Applied Physics Express, 2010, 3(1): pp. 012301-012311.
15. B. Hoex, and et al., “ Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3, ” Applied Physics Letters, 2007,91(11): pp. 107-112.
16. P. Saint, and et al., “High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide, ” IEEE Electron Device Letters, 2010, 31(7): pp. 695-697.
17. B. Hoex, and et al., “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3, ” Applied Physics Letters, 2006, 89(4): pp. 42-48.
18. 維基百科 sol-gel method , Available from: https://zh.wikipedia.org/wiki/%E6%BA%B6%E8%86%A0%E5%87%9D%E8%86%A0
19. H. Xiao, and et al., “ Excellent passivation of p-Type Si surface by Sol-Gel Al2O3 films, ” Chinese Physics Letters, 2009, 26(8): pp. 88-102.
20. J. Sun, and Y.C. Sun, “ Chemical liquid phase deposition of thin aluminum oxide films,”Chinese Journal of Chemistry, 2004, 22(7): pp. 661-667.
21. 陳柏宏,「濕式氧化法形成Al2O3鈍化層之背面具局部接觸結構矽晶太陽能電池研究」,國立清華大學光電工程研究所碩士班論文,民國一百零五年八月。
22. 吳昆叡,「陽極氧化鋁用於背表面鈍化之太陽能電池研究」,國立清華大學光電工程研究所碩士班論文,民國一百零五年八月。
23. F. Li, L. Zhang, and R.M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,”Chemistry of Materials,1998, 10(9): pp. 2470-2480.
24. M.J. Kerr, and et al., “Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide, ” Journal of Applied Physics, 2001, 89(7): pp. 3821-3826.
25. B. Hoex, and et al., “On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3, ” Journal of Applied Physics, 2008, 104(11): pp. 113-118.
26. K. Kimoto, and et al., “Coordination and interface analysis of atomic-layer-deposition Al2O3 on Si (001) using energy-loss near-edge structures, ” Applied Physics Letters, 2003, 83(21): pp. 4306-4308.
27. G. Lucovsky, “ A chemical bonding model for the native oxides of the III–V compound semiconductors, ” Journal of Vacuum Science and Technology, 1981, 19(3): pp. 456-462.
28. J.G. Fossum, “ Physical operation of back-surface-field silicon solar cells, ” IEEE Transactions on Electron Devices, 1977,24(4): pp. 322-325.
29. Back surface field , Available from: http://pvcdrom.pveducation.org/DESIGN/SURF_MIN.HTM.
30. 維基百科 半導體能隙結構, Available from:
https://zh.wikipedia.org/wiki/File:In_direct-Bandgap.
31. D.A. Neamen, Semiconductor physics and devices : basic principles, 2nd edition, Mcgraw Hill Higher Education,2009, pp. 78-80.
32. 鼎昕科技 太陽電池測試, Available from: http://www.toptical.com.tw/web/SG?pageID=41208.
33. 維基百科 RCA clean, Available from: https://en.wikipedia.org/wiki/RCA_clean.
34. RCA clean製程, Available from: http://www.gptc.com.tw/tw/product/product_detail-16.
35. P.K. Singh, and et al., “ Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions, ” Solar Energy Materials and Solar Cells, 2001, 70(1): pp. 103-113.
36. J. Oh, H.C. Yuan, and H.M. Branz, “ An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures, ” Nature Nanotechnology, 2012, 7: pp. 743-755.
37. H. Jansen, and et al., “The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control, ” Journal of Micromechanics and Microengineering, 1995, 5(2): pp. 115-121.
38. 選擇性射極矽晶太陽電池技術介紹, Available from: http://www.materialsnet.com.tw/DocView.aspx?id=8559.
39. F. Duerinckx, and J. Szlufcik, “Defect passivation of industrial multicrystalline solar cells based on PECVD silicon nitride,” Solar Energy Materials and Solar Cells, 2002. 72(1): pp. 231-246.
40. 維基百科 X射線光電子能譜學, Available from: https://zh.wikipedia.org/wiki/X%E5%B0%84%E7%BA%BF%E5%85%89%E7%94%B5%E5%AD%90%E8%83%BD%E8%B0%B1%E5%AD%A6.
41. 維基百科 掃描電子顯微鏡, Available from: https://zh.wikipedia.org/wiki/%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C.
42. 成功大學奈微米中心 電子束蒸鍍機 E-beam Evaporator, Available from: http://cmnst.ncku.edu.tw/files/15-1023-159877,c17606-1.php?Lang=zh-tw.
43. K. Matsunaga, and et al., “ First-principles calculations of intrinsic defects ,” Physical Review, 2003, 68(8): pp. 85-110.
44. 功能性粉末 奈米級alpha氧化鋁-氧化鋁粉體, Available from:
https://ejournal.stpi.narl.org.tw/sd/download?source=9512/9512-02
45. 百度文庫 Sinton WCT-120 manual, Available from:
https://wenku.baidu.com/view/c87b89cc51e79b8968022667.html.
46. 氫型陽離子交樹脂, Available from: https://htkps.wordpress.com/2010/09/28/%E6%B0%AB%E5%9E%8B%E9%99%BD%E9%9B%A2%E5%AD%90%E4%BA%A4%E6%8F%9B%E6%A8%B9%E8%84%82%E6%98%AF%E4%BB%80%E9%BA%BC/.
47. 王教瑋,「以鋁漿料共燒結形成背部射極之n型太陽電池研究」,國立清華大學光電工程研究所碩士班論文,民國一百零六年八月。

48. D. Macdonald, and L.J. Geerligs, “ Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon ,” Applied Physics Letters, 2004, 85(18): pp. 4061-4063.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *