帳號:guest(18.224.70.204)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉祖德
作者(外文):Liu, Tzu-De
論文名稱(中文):以電漿輔助化學氣相沉積法鍍製之低氮氮化矽薄膜經熱退火後光學特性及室溫機械損耗之研究
論文名稱(外文):Study of annealing effect on the optical properties and the room temperature mechanical loss of the silicon-rich silicon nitride films deposited with PECVD
指導教授(中文):趙煦
指導教授(外文):Chao, Shiuh
口試委員(中文):李正中
陳至信
口試委員(外文):Lee, Cheng-Chung
Chen, Jyh- Shin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:105066539
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:62
中文關鍵詞:重力波機械損耗光學吸收退火電漿輔助化學氣相沉積
外文關鍵詞:Gravitational-wavemechanical lossoptical absorptionannealPECVD
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
雷射干涉重力波偵測組織LIGO(Laser Interferometer of Gravitational-wave Observatory)利用大型麥克森干涉儀量測重力波訊號。因為重力波訊號非常微弱,容易受背景雜訊影響,所以降低背景雜訊可以有效提升重力波偵測器的靈敏度,探測更為微弱的重力波訊號。根據理論雜訊頻譜圖得知,在頻率約100赫茲附近總體雜訊最低,此頻率附近主要影響的雜訊為源自於雷射系統的Quantum noise以及由高反射鏡鍍膜材料所貢獻的Coating Brownian noise。本實驗室致力於降低Coating Brownian noise。根據統計熱力學的fluctuation dissipation理論,薄膜的Coating Brownian noise與薄膜的機械損耗成正比,我們藉由量測薄膜的機械損耗評估薄膜的Coating Brownian noise。此外,高反射鏡鍍膜材料需要極佳的光學性質,以減少因為吸收造成的額外熱雜訊,所以降低薄膜之光學吸收也非常重要。
在之前的研究中,低氮-氮化矽薄膜已經有很低的光學吸收及機械損耗。本論文試著利用退火製程繼續降低此材料的光學吸收及機械損耗,並研究不同的退火溫度對薄膜光學及機械性質的影響,如成分比例、結晶、折射率、膜厚、楊氏係數、應力及鍵結含量等。
研究結果顯示:低氮-氮化矽薄膜經過退火350度30分鐘後消光係數從1.51×〖10〗^(-5)下降至1.02×〖10〗^(-5),但隨退火溫度繼續上升消光係數反而增加;而室溫機械損耗則隨著退火溫度上升而減少,在退火450度30分鐘後室溫機械損耗從7.49×〖10〗^(-5)下降至3.24×〖10〗^(-5)。此外,我們發現低氮-氮化矽薄膜的光學吸收會隨著Si-H鍵含量減少而上升;而室溫機械損耗則會隨著Si-H鍵含量減少而下降。
The group of Laser Interferometer of Gravitational-wave Observatory (LIGO) built large Michelson interferometers to detect gravitational wave directly. The sensitivity of these detectors around 100 Hz are limited by the quantum noise and coating Brownian noise, which are contributed from the laser system and the coating materials of high reflective mirror, respectively. Our laboratory focused on reducing the coating Brownian noise. According to the fluctuation-dissipation theorem, there is a positive correlation between the coating Brownian noise and the mechanical loss of films. So we measured the mechanical loss of films to calculate the related coating Brownian noise. In addition, it is also important to reduce the optical absorption of the films.
It has been discovered in the previous study that the silicon-rich silicon nitride film has the low optical absorption and mechanical loss. In our research, we tried to further reduce optical absorption and mechanical loss by using the annealing process. In addition, we investigated the effects of optical and mechanical properties of thin films in different annealing temperatures such as N/Si ratio, structure, refractive index, physical thickness, Young's modulus, stress, and bond concentration.
We found that the optical absorption of silicon-rich silicon nitride films decreases from 1.51×〖10〗^(-5) to 1.02×〖10〗^(-5) in 350℃ annealed for 30 minutes, but while the temperature keeps on rising, the optical absorption increases. The result also shows that the higher annealing temperature gets, the lower room-temperature mechanical loss reaches; the room-temperature mechanical loss drops from 7.49×〖10〗^(-5) to 3.24×〖10〗^(-5) in 450℃ annealed in 30 minutes. In conclusion, we observed that there is a negative correlation between the optical absorption and the number of Si-H bonds; in contrast, the relationship between the room-temperature mechanical loss of silicon-rich silicon nitride films and the number of Si-H bonds is a positive correlation.
Abstract I
摘要 II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 導論 1
1-1 引言 1
1-2 研究動機 3
第二章 低氮-氮化矽薄膜退火方式改善及退火後之物理性質 7
2-1 氮化矽薄膜鍍製方法介紹 7
2-2 低氮-氮化矽薄膜退火方式改善 8
2-2.1 三層結構與單層之比較 8
2-2.2 單層低氮-氮化矽薄膜退火表面損傷之改善 9
2-3 不同退火溫度之物理性質 11
2-3.1 不同退火溫度之成分比例 11
2-2.2 不同退火溫度之結晶情況 14
2-2.3 不同退火溫度之楊氏係數 15
2-3.4 不同退火溫度之折射率與厚度 16
2-2.5 不同退火溫度之應力 27
第三章 不同退火溫度之低氮-氮化矽薄膜鍵結與元素含量分析 29
3-1 鍵結與元素含量計算簡介 29
3-2 不同退火溫度之鍵結與元素含量 31
第四章 不同退火溫度之低氮-氮化矽薄膜光學吸收 33
4-1 光學吸收量測基本架構與計算簡介 33
4-2 不同退火溫度之低氮-氮化矽薄膜光學吸收 34
第五章 不同退火溫度之低氮-氮化矽薄膜室溫機械損耗 39
5-1 單晶矽懸臂基板模態模擬與製程流程 39
5-2 機械損耗量測基本架構與計算簡介 41
5-3 不同退火溫度之低氮-氮化矽薄膜機械損耗 44
5-3.1 未退火之低氮-氮化矽薄膜機械損耗 44
5-3.2 不同退火溫度之低氮-氮化矽薄膜機械損耗 47
第六章 總結與未來展望 55
6-1 總結 55
6-2 未來展望 56
參考文獻 58

[1] A. Einstein, Die grundlage der allgemeinen relativit¨atstheorie, Annalen der Physik 49 (1916) 769
[2] R. A. Hulse et al., Discovery of a pulsar in a binary system, The Astrophysical journal 195 (1975) L51
[3] B. P. Abbott, et al. Observation of Gravitational Waves from a Binary Black Hole Merger. PRL 116, 061102, 2016.
[4]‘The Nobel Prize in Physics 2017’. Nobelprize.org. Nobel Media AB 2014. Web. 9 Oct 2017. http://www.nobelprize.org/nobel_prizes/physics/laureates/2017/
[5] LIGO Scientific Collaboration Group. Instrument science white paper. LIGO- T1800133-v3: 26, Jun. 2018,
[6] Huang-Wei Pan, Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector. PHYSICAL REVIEW D 97, 022004 (2018)
[7] Gregory M Harry, et al. Titania-doped tantala/silica coatings for gravitational-wave detection.Classical and Quantum Gravity,24,405-415,2007
[8] 吳孟筠,利用電漿輔助化學氣相沉積法鍍製四分之一波長厚度SiN0.40/SiO2堆疊之室溫機械損耗,國立清華大學,碩士論文,2016
[9] 康乃中,光熱共光路干涉儀系統之設置與電漿輔助化學氣象沉積法沉積之氮化矽薄膜光學吸收研究,國立清華大學,碩士論文,2017


[10]Murray, P, et al. Ion-beam sputtered amorphous silicon films for cryogenic precision measurement systems. Physical Review D, 92, 062001,2015
[11] I W Martin, et al. Effect of heat treatment on mechanical dissipation in Ta2O5 coatings. Class. Quantum Grav. 27,225020,2010
[12] 陳信傑,以電漿輔助化學氣相沉積法鍍製於矽懸臂之氮化矽其熱退火後對於室溫機械損耗之影響,國立清華大學,碩士論文,2017
[13] Mishima Y, et al. Investigation of the bubble formation mechanism in a-Si:H films by Fourier-transform infrared mirospectroscopy. J. Appl. Phys, 64, 8, 1988.
[14] P.-H. Wu, et al. Mechanical property characterization of sputtered and plasma enhanced chemical deposition (PECVD) silicon nitride films after rapid thermal annealing. Sensors and Actuators A 168 (2011) 117–126
[15] Cai et al. Effects of rapid thermal anneal on refractive index and hydrogen content of plasmaenhanced chemical vapor deposited silicon nitride films, J. Appl. Phys. 80 (9), 1 November 1996
[16] D.N.Wright, EFFECT OF ANNEALING ON PECVD SILICON NITRIDE FILMS, 22nd European Photovoltaic Solar Energy Conference, 3-7 September 2007, Milan, Italy
[17] Anastasia Zelenina, Silicon nanocrystals in various dielectric matrices: structural and optical properties



[18] Martı´nez et al. Thermally induced changes in the optical properties of SiNx :H films deposited by the electron cyclotron resonance plasma method, J. Appl. Phys., Vol. 86, No. 4, 15 August 1999
[19] 張臨安,以電漿輔助化學氣象沉積法鍍製高氮氮化矽薄膜其熱退火對光學特性及機械特性之影響,國立清華大學,碩士論文,2018
[20] Hasegawa. S ,et al. Connection between Si− N and Si−H Vibrational Properties in Amorphous SiNx: H Films. Philos. Mag. B 1989, 59, 365−375
[21] Shanks H,et al. Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon. Phys. Status Solidi 100,43,1980
[22] Fang C J , et al. The hydrogen content of a-Ge:H and a-Si:H as determined by ir spectroscopy, gas evolution and nuclear reaction techniques. Journal of Non-Crystalllne Solids 35 & 36 255-60,1980
[23] Morimoto A, et al. Properties of Hydrogenated Amorphous Si-N Prepared by Various Methods .Japanese Journal of Appiled Physics 24, 1394-8,1985
[24] L Wang, et al. Characterization of nitrogen-rich silicon nitride films grown by the electron cyclotron resonance plasma technique. Semicond. Sci. Techn. 18 , 633-641,2003
[25].Morimoto A, Tsujimura Y, Kumeda M, and Shimizu T 1985 Japanese Journal of Appiled Physics 24, 1394-8
[26].Makino T and Maeda M 1986 Japanese Journal of Appiled Physics 25 1300-6
[27].Makino T 1983 Journal of the Electrochemistry Society 130 450-5
[28] R. Birney et al., "Exploring the fundamental limits of NIR absorption in amorphous silicon", LIGO document: LIGO-P1800148, (2018)
[29] Ma´ rtil et al. Rapid thermally annealed plasma deposited SiNx :H thin films: Application to metal–insulator–semiconductor structures with Si, In0.53Ga0.47As,and InP, J. Appl. Phys., Vol. 94, No. 4, 15 August 2003
[30] 王薇雅,應用於雷射干涉重力波偵測器開發工作之單晶矽懸臂梁之機械震動性質研究,國立清華大學,碩士論文, 2013
[31] 李家暐,探討應用於雷射干涉重力波偵測器之以電漿輔助化學氣象沉積法製備於矽懸臂之氮化矽薄膜之材料特性與機械損耗,國立清華大學,碩士論文, 2013
[32] B. S. Berry, W. C. Pritchet. Vibrating reed internal friction apparatus for films and foils. IBM journal of research and development, 1975, 19: 334
[33] Makino T and Maeda M 1986 Japanese Journal of Appiled Physics 25 1300-6
[34] Makino T 1983 Journal of the Electrochemistry Society 130 450-5
[35] H. Shanks, et al. Infrared Spectrum and Structure of Hydrogenated Amorphous Silicon.Phys. Stauts Solidi B 100, 43, 1980
[36] R. G. Christian. The theory of oscillating-vane vacuum gauges. Pergamon Press Ltd, Feb. 1966, 16: 175-178
[37] A. W. Heptonstall. Characterisation of Mechanical Loss in Fused Silica Ribbons for use in Gravitational Wave Detector Suspensions. Ph. D. thesis, University of Glasgow, Aug. 2004

[38] 歐政勳,室溫下量測機械損耗之系統設置與量測熔融石英玻璃懸臂樑及單晶矽懸臂之初部量測分析,國立清華大學碩士論文, 2012
[39] M. A. Hopcroft, W. D. Nix, T. W. Kenny. What is the Young’s modulus of silicon? Journal of Microelectromechanical system, Apr. 2010, 19: 229
[40] T. Y. Zhang, Y. J. Su, C. F. Qian, et al. Microbridge testing of silicon nitride thin films deposited on silicon wafers. Acta mater., Mar. 2000, 48: 2843-2857
[41] B. A. Walmsley, Y. Liu, X. Z. Hu, et al. Poisson’s ratio of low-temperature pecvd silicon nitride thin films. J. Microelectromechanical Syst., Jun. 2007, 16: 622-627
[42] V. Ziebart, O. Paul, U. Munch, et al. Thin-Films: stresses and mechanical properties VII: A novel method to measure Poisson’s ratio of thin films. Cambridge University Press, 1998, 27-32, ISBN: 978-1-107-41330-6
[43] C. L. Dai. A resonant method for determining mechanical properties of Si3N4 and SiO2 thin films. Materials Letters, Jun. 2007, 61: 3089-3092
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以電漿輔助化學氣相沈積法於矽懸臂沈積之氮化矽薄膜應力對機械損耗之影響暨機械損耗量測系統改善
2. 以電漿輔助化學氣相沉積法沉積氮化矽薄膜及其與二氧化矽之堆疊膜之低溫機械損耗
3. 熱退火對電漿輔助化學氣相沉積法鍍製之高含氧量氮氧化矽薄膜其光學特性與機械特性影響之探討
4. 使用 LPCVD 方法沉積 SiN 在矽懸臂基板量測其機械損耗,並開發用於量測機械損耗的 GNS
5. 以離子束濺鍍法鍍製氮氧化矽薄膜探討其光學特性
6. 以低壓化學氣相沉積法鍍製之氮化矽薄膜在雷射重力波偵測器反射鏡應用之研究
7. 光熱共光路干涉儀系統之設置與電漿輔助化學氣象沉積法沉積之氮化矽薄膜光學吸收研究
8. 以電漿輔助化學氣相沉積法鍍製高氮氮化矽薄膜其熱退火對光學特性與機械特性之影響
9. 以電漿輔助化學氣相沉積法鍍製氮氧化矽薄膜其光學特性與機械特性之探討
10. 以離子束濺鍍法鍍製氮化矽薄膜其光學特性之探討
11. 以補氫退火方式降低以電漿輔助化學氣相沉積法鍍製之高含氮量氮氧化矽薄膜光學特性與機械特性之研究
12. 以電漿輔助化學氣相沉積法鍍製於矽懸臂之氮化矽其熱退火後對於室溫機械損耗之影響
13. 利用離子束濺鍍法鍍製奈米多層膜其低溫機械損耗抑制效應與退火效應之研究
14. 以電漿輔助化學氣相沉積法鍍製之氮化矽薄膜其熱退火後光學特性以及無氨氣製程其光學及機械特性之探討
15. 利用電漿輔助化學氣相沉積法鍍製氮化矽與氮氧化矽薄膜建構光學吸收經驗公式
 
* *