帳號:guest(18.190.217.167)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊智穎
作者(外文):Yang, Chih-Ying
論文名稱(中文):有序結構與無序結構的高反射材料設計
論文名稱(外文):Design of Highly Reflective Materials by Ordered and Amorphous Structures
指導教授(中文):洪毓玨
指導教授(外文):Hung, Yu-Chueh
口試委員(中文):何榮銘
蔣酉旺
口試委員(外文):Ho, Rong-Ming
Chiang, Yu-Wang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:105066525
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:82
中文關鍵詞:有序無序高反射材料螺旋二十四面體結構色彩捕捉結構位移自組裝殼聚醣非晶相螺旋二十四面體
外文關鍵詞:orderedamorphoushighly reflective materialgyroidTrapping of structural colorationstructural shiftingself-assemblingchitosanamorphous gyroid
相關次數:
  • 推薦推薦:0
  • 點閱點閱:426
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
高反射材料近年來因其能應用於各式各樣的領域而受到廣大的注意,高反射材料的光學性質主要是受到其組成材料、結構特徵以及材料排列方式的影響,不論是有序結構或無序結構的高反射材料,均已被科學家們發現於生物界中實際存在著。科學家們亦透過生物自組裝的方式,成功製造出可調控光學性質的有序結構高反射材料,然而相較於有序結構,無序結構的可調控性無論是在理論基礎或是實驗製造上,目前仍然是一大挑戰。在本研究中,我們利用了有限時域差分法的數值模擬針對有序結構以及無序結構進行高反射材料的研究。有序結構方面,我們採用螺旋二十四面體結構當作模型,並透過系統化的結構位移及結構拉伸去探討其對於光子能隙以及材料反射的影響。根據模擬結果,我們發現螺旋二十四面體網狀結構的殼聚醣有望成為能應用於紫外光波段的高反射材料。此外,我們亦發現可調控反射波段從可見光到紅外光的高反射嵌段共聚物材料可透過對螺旋二十四面體的結構進行拉伸來達成,而且模擬結果也與實驗結果互相符合。無序結構方面,我們發展了一種方法,能夠有效率地建造出可調控亂度的無序三叉模型;透過系統化的分析,我們探討了結構亂度與能隙特性之間的關聯以及材料能產生全方向能隙的關鍵因素。我們的模擬結果為各種無序結構高反射材料提供了設計的理論基礎以及方法,或許未來將能使用在各式各樣先進的光學應用上。
Highly reflective materials have drawn considerable attention owing to broad applications in various fields. The optical properties are governed by the constituent materials as well as structural features and arrangements. Both ordered and amorphous structures exhibiting high reflection have been found in nature. While techniques based on self‐assembly have been well developed to construct ordered structures with controlled optical properties, manipulation of amorphous structures remains a challenge, both theoretically and experimentally.In this study, we carry out numerical calculations based on finite‐difference time-domain method to investigate the ordered and amorphous structures for highly reflective materials. For the ordered structures, we employ the gyroid networks as a model system to study the effect of structural arrangement on reflections. A systematic analysis is conducted to examine properties of band gap and reflection while the gyroid networks undergo relative shifting or stretching. Based on the results, we demonstrate that a gyroid-structured and chitosan‐based highly reflective material is promising to be operated in the UV regime. In addition, we show that a highly reflective material of block copolymer with a broad tunable range from the visible to infrared can be realized by stretching of gyroid networks, which is consistent with the experiment result. For amorphous structures, we develop an efficient approach to construct connected tripod structures with controlled randomness. The correlation between the structural randomness and band gap properties is systematically studied, and the critical factors that may be relevant to the emergence of complete band gaps are discussed. Our results provide guidelines and strategies toward versatile designs of highly reflective materials with amorphous structures, which may be of great use for a variety of advanced optical applications.
Abstract.........................................................Ⅰ
Contents.........................................................Ⅲ
List of Figures..................................................Ⅴ
List of Tables...................................................Ⅹ
Chapter 1 Introduction...........................................1
1.1 Introduction to metamaterials................................1
1.2 Photonic crystals............................................4
1.3 Chiral structures............................................6
1.4 Amorphous structures.........................................8
1.5 Motivation..................................................10
Chapter 2 Methods...............................................12
2.1 Band structure..............................................12
2.1.1 Finite-difference time-domain method......................12
2.1.2 Plane wave expansion method...............................13
2.1.3 Brillouin zone............................................14
2.2 Simulation of reflection spectra............................15
2.3 Experimental measurement....................................15
2.3.1 Transmittance.............................................15
2.3.2 Extinction coefficient and refractive index (Ellipsometry) ................................................................16
2.4 Effective medium model......................................18
Chapter 3 Design and analysis of gyroid photonic crystals.......22
3.1 Model construction..........................................22
3.1.1 Gyroid structure morphology...............................22
3.1.2 Orientation of gyroid photonic crystal....................22
3.1.3 Shifting of intertwined gyroid-structured networks........24
3.2 High reflection of gyroid-structured chitosan...............28
3.2.1 Shifting of gyroid-structured chitosan....................28
3.2.2 Optical properties of chitosan............................30
3.2.3 Band structure and reflection spectra of gyroid-structured chitosan........................................................31
3.3 Swelling of gyroid photonic crystals........................36
3.3.1 Trapping of structural coloration.........................36
3.3.2 Swelling method of simulation.............................38
3.3.3 Reflection spectra of swelling gyroid.....................40
Chapter 4 Design and analysis of amorphous photonic crystals....43
4.1 Model construction of porous amorphous photonic crystal.....43
4.1.1 Random close packing......................................43
4.1.2 Spinodal decomposition....................................44
4.2 Model construction of rod-connected amorphous photonic crystal ................................................................45
4.2.1 Rod-connected amorphous tetrahedral networks..............46
4.2.2 Rod-connected amorphous trihedral networks................53
4.3 Analysis of polyhedral photonic crystal.....................60
4.3.1 Structure order parameter.................................60
4.3.2 Similarity................................................61
4.4 A novel method of construction of amorphous gyroid photonic crystal.........................................................64
4.4.1 Ordered nodes arrangement of gyroid photonic crystal......64
4.4.2 Random relocation of nodes................................65
4.4.3 Periodic boundary condition...............................67
4.5 Band gap of amorphous gyroid photonic crystal...............69
Chapter 5 Conclusions and prospectives..........................75
References......................................................77
[1] Y. Liu and X. Zhang, "Metamaterials: a new frontier of science and technology," Chemical Society Reviews, vol. 40, pp. 2494-2507, 2011.
[2] D. K. Cheng, Field and wave electromagnetics. Pearson Education India, 1989.
[3] J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Physical Review Letters, vol. 85, pp. 3966-3969, 2000.
[4] V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Soviet Physics Uspekhi, vol. 10, pp. 509-514, 1968.
[5] W. J. Padilla, D. N. Basov, and D. R. Smith, "Negative refractive index metamaterials," Materials Today, vol. 9, pp. 28-35, 2006.
[6] J. B. Pendry and D. R. Smith, "Reverse light: Negative refraction," Physics Today, vol. 57, pp. 37-44, 2003.
[7] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, vol. 292, pp. 77-79, 2001.
[8] J. Zhou, T. Koschny, and M. Kafesaki, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Physical Review Letters, vol. 95, p. 223902, 2005.
[9] D. R. Smith, W. J. Padilla, and S. Schultz, "Composite medium with simultaneously negative permeability and permeability," Physical Review Letters, vol. 84, pp. 4184-4187, 2000.
[10] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Modeling of Flow of Light, 2nd ed. Princeton University, 2008.
[11] J. W. S. Rayleigh, "On the remarkable phenomenon of crystalline reflexion described by prof. Stokes,"
[12] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, vol. 58, pp. 2059-2062, 1987.
[13] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, vol. 58, pp. 2486-2489, 1987.
[14] T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Optics Express vol. 11, pp. 2589-2596, 2003.
[15] M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Physical Review B, vol. 62, pp. 10696-10705, 2000.
[16] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Physical Review B, vol. 65, 2002.
[17] D. W. Prather et al., "Self-collimation in photonic crystal structures: a new paradigm for applications and device development," Applied Physics, vol. 40, pp. 2635-2651, 2007
[18] R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, "Refraction and rightness in photonic crystals," Optics Express, vol. 13, pp. 8596-8605, 2005.
[19] S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Physical Review Letters, vol. 102, 2009.
[20] M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Optics Letters, vol. 35, pp. 1593-1595, 2010.
[21] M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. Freymann, "Polarization Stop Bands in Chiral Polymeric Three‐Dimensional Photonic Crystals," Advanced Materials, vol. 19, pp. 207-210, 2007.
[22] J. K. Gansel et al., "Gold helix photonic metamaterial as broadband circular polarizer," Science, vol. 325, pp. 1513-1515, 2009.
[23] M. Maldovan, A. M. Urbas, N. Yufa, W. C. Carter, and E. L. Thomas, "Photonic properties of bicontinuous cubic microphases," Physical Review B, vol. 65, no. 16, 2002.
[24] K. Michielsen and D. G. Stavenga, "Gyroid cuticular structures in butterfly wing scales: biological photonic crystals," Journal of The Royal Society Interface, vol. 5, pp. 85-94, 2008.
[25] V. Saranathan et al., "Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales," Proceedings of the National Academy of Sciences, vol. 107, pp. 11676-11681, 2010.
[26] K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, "Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks," Angewandte Chemie, vol. 50, pp. 11985-11989, 2011.
[27] M. Saba et al., "Circular dichroism in biological photonic crystals and cubic chiral nets," Physical Review Letters, vol. 106, p. 103902, 2011.
[28] G. E. Schroder-Turk et al., "The chiral structure of porous chitin within the wing-scales of Callophrys rubi," Journal of Structural Biology, vol. 174, pp. 290-295, 2011.
[29] C. Mille, E. C. Tyrode, and R. W. Corkery, "3D titania photonic crystals replicated from gyroid structures in butterfly wing scales: approaching full band gaps at visible wavelengths," RSC Advances, vol. 3, pp. 3109-3117, 2013.
[30] S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, "On the origin of chirality in nanoplasmonic gyroid metamaterials," Advanced Materials, vol. 25, pp. 612-617, 2013.
[31] M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, "Miniature chiral beamsplitter based on gyroid photonic crystals," Nature Photonics, vol. 7, pp. 801-805, 2013.
[32] M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schröder-Turk, "Absence of Circular Polarisation in Reflections of Butterfly Wing Scales with Chiral Gyroid Structure," Materials Today: Proceedings, vol. 1, pp. 193-208, 2014.
[33] S. Yoshioka, H. Fujita, S. Kinoshita, and B. Matsuhana, "Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales," Journal of The Royal Society Interface, vol. 11, p. 20131029, 2014.
[34] Y. Ye and S. He, "90° polarization rotator using a bilayered chiral metamaterial with giant optical activity," Applied Physics Letters, vol. 96, p. 203501, 2010.
[35] Y. R. Li and Y. C. Hung, "Dispersion-free broadband optical polarization rotation based on helix photonic metamaterials," Optics Express, vol. 23, pp. 16772-16781, Jun 29 2015.
[36] Z.-Y. Xie, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, "Optical Switching of a Birefringent Photonic Crystal," Advanced Materials, vol. 20, pp. 3601-3604, 2008.
[37] A. Charlesby, "Effect of temperature on the structure of highly," Proceedings of the Physical Society, vol. 57, 1945.
[38] T. Ichikawa, "The assembly of hard spheres as a structure model of amorphous iron," Physica Status Solidi A, vol. 29, pp. 293-302, 1975.
[39] J. J. Kim, Y. Choi, S. Suresh, and A. Argon, "nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature," Science, vol. 295, pp. 654-657, 2002.
[40] X. Li et al., "Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries," Electrochimica Acta, vol. 89, pp. 387-393, 2013.
[41] L. Morsdorf et al., "Phase selection and nanocrystallization in Cu-free soft magnetic FeSiNbB amorphous alloy upon rapid annealing," Journal of Applied Physics, vol. 119, p. 124903, 2016.
[42] C.-M. Hsu et al., "High-Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Reflector," Advanced Energy Materials, vol. 2, pp. 628-633, 2012.
[43] M. Treacy and K. Borisenko, "The local structure of amorphous silicon," Science, vol. 335, pp. 950-953, 2012.
[44] J. W. Wang et al., "Two-phase electrochemical lithiation in amorphous silicon," Nano Letters, vol. 13, pp. 709-715, 2013.
[45] H. J. Son et al., "Synthesis of fluorinated polythienothiophene co benzodithiophenes and effect of fluorination on the photovoltaic properties," Journal of the American Chemical Society, vol. 133, pp. 1885-1894, 2011.
[46] Y. Chen, H. Cui, L. Li, Z. Tian, and Z. Tang, "Controlling micro-phase separation in semi-crystalline/amorphous conjugated block copolymers," Polymer Chemistry, vol. 5, pp. 4400-4404, 2014.
[47] B. Dong et al., "Structural coloration and photonic pseudogap in natural random close-packing photonic structures," Optics Express, vol. 18, pp. 14430-14438, 2010.
[48] B. Q. Dong et al., "Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis," Physical Review E, vol. 84, p. 11915, 2011.
[49] S. F. Liew et al., "Photonic band gaps in three-dimensional network structures with short-range order," Physical Review A, vol. 84, 2011.
[50] J. Haberko and F. Scheffold, "Fabrication of mesoscale polymeric templates for threedimensional disordered photonic materials," Optics Express, vol. 21, pp. 1057-1065, 2013.
[51] P. V. d. Witte, P. J. Dijkstra, J. W. A. V. d. Berg, and J. Feijen, "Phase separation processes in polymer solutions in relation to membrane formation," Journal of Membrane Science, vol. 117, pp. 1-31, 1996.
[52] L. Zhang, H. Shen, and A. Eisenberg, "Phase separation behavior and crew-cut micelle formation of polystyrene-b-poly (acrylic acid) copolymers in solutions," Macromolecules, vol. 34, pp. 1001-1011, 1997.
[53] M. Svensson, P. Alexandridis, and P. Linse, "Phase behavior and microstructure in binary block copolymer/selective solvent systems: Experiments and theory," Macromolecules, vol. 32, pp. 637-645, 1999.
[54] B. H. Jones and T. P. Lodge, "Nanocasting nanoporous inorganic and organic materials from polymeric bicontinuous microemulsion templates," Polymer Journal, vol. 44, pp. 131-146, 2012.
[55] N. Yan and Y. Wang, "Reversible switch between the nanoporous and the nonporous state of amphiphilic block copolymer films regulated by selective swelling," Soft Matter, vol. 11, pp. 6927-6937, 2015.
[56] V. Saranathan et al., "Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species," Journal of The Royal Society Interface, vol. 9, pp. 2563-2575, 2012.
[57] K. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," presented at the IEEE Transactions on Antennas and Propagation," 1966.
[58] L. Brillouin, "Les électrons dans les métaux et le classement des ondes de de Broglie correspondantes," Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, vol. 191, p. 292, 1930.
[59] H. J. Butt, K. Graf, and M. Kappl, Measurement of Adsorption Isotherms. Wiley-VCH, 2006.
[60] J. d. R´ıo and S. Whitaker, "Maxwells equations in two-phase systems i: Local electrodynamic equilibrium," Transport in Porous Media, vol. 39, pp. 159-186, 2000.
[61] H. Y. Hsueh et al., "Shifting networks to achieve subgroup symmetry properties," Advanced Materials, vol. 26, pp. 3225-3229, 2014.
[62] L. D. S. Yadav, Ultraviolet and Visible Spectroscopy. 2005.
[63] E. L. Lin, W. L. Hsu, and Y. W. Chiang, "Trapping Structural Coloration by a Bioinspired Gyroid Microstructure in Solid State," ACS Nano, vol. 12, pp. 485-493, 2018.
[64] C. S. O'Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, "Jamming at zero temperature and zero applied stress: the epitome of disorder," Physical Review E, vol. 68, p. 11306, 2003.
[65] G. J. Gao, J. Blawzdziewicz, and C. S. O'Hern, "Frequency distribution of mechanically stable disk packings," Physical Review E, vol. 74, p. 61304, 2006.
[66] D. Carolan, H. M. Chong, A. Ivankovic, A. J. Kinloch, and A. C. Taylor, "Co-continuous polymer systems: A numerical investigation," Computational Materials Science, vol. 98, pp. 24-33, 2015.
[67] C. R. Wronski, "Intrinsic and Light Induced Gap States in a-Si:H Materials and Solar Cells - Effects of Microstructure," Thin Solid Films, pp. 470-475, 2004.
[68] F. Wooten, K. Winer, and D. Weaire, "computer generation of structural models of amorphous Si and Ge," Physical Review Letters, vol. 54, pp. 1392-1395, 1985.
[69] G. T. Barkema and N. Mousseau, "High-quality continuous random networks," Physical Review B, vol. 62, pp. 4985-4990, 2000.
[70] A. J. Stone and D. J. Wales, "Theoretical studies of icosahedral C60 and some related structures," Chemical Physics Letters, vol. 128, pp. 501-503, 1986.
[71] P. N. Keating, "Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure," Physical Review, vol. 145, p. 637, 1966.
[72] S. Imagawa and K. Edagawa, "Robustness and fragility of photonic bandgap in photonic amorphous diamond structures," Applied Physics A, vol. 123, p. 41, 2016.
[73] M. Florescu, S. Torquato, and P. J. Steinhardt, "Designer disordered materials with large, complete photonic band gaps," Proceedings of the National Academy of Sciences, pp. 20658-20663, 2009.
[74] S. R. Sellers, W. Man, S. Sahba, and M. Florescu, "Local self-uniformity in photonic networks," Nature Communications, vol. 8, p. 14439, 2017.
[75] P. L. Chau and A. J. Hardwick, "A new order parameter for tetrahedral configurations," Molecular Physics, vol. 93, pp. 511-518, 1988.
[76] R. M. Kaufmann, S. Khlebnikov, and B. W. Kaufmann, "The geometry of the double gyroid network: quantum and classical," Journal of Noncommutative Geometry, vol. 6, pp. 623-664, 2012.
[77] B. P. Cumming, M. D. Turner, G. E. Schroder-Turk, S. Debbarma, B. Luther-Davies, and M. Gu, "Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass," Optics Express, vol. 22, pp. 689-698, 2014.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *