|
[1] Y. Liu and X. Zhang, "Metamaterials: a new frontier of science and technology," Chemical Society Reviews, vol. 40, pp. 2494-2507, 2011. [2] D. K. Cheng, Field and wave electromagnetics. Pearson Education India, 1989. [3] J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Physical Review Letters, vol. 85, pp. 3966-3969, 2000. [4] V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Soviet Physics Uspekhi, vol. 10, pp. 509-514, 1968. [5] W. J. Padilla, D. N. Basov, and D. R. Smith, "Negative refractive index metamaterials," Materials Today, vol. 9, pp. 28-35, 2006. [6] J. B. Pendry and D. R. Smith, "Reverse light: Negative refraction," Physics Today, vol. 57, pp. 37-44, 2003. [7] R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, vol. 292, pp. 77-79, 2001. [8] J. Zhou, T. Koschny, and M. Kafesaki, "Saturation of the magnetic response of split-ring resonators at optical frequencies," Physical Review Letters, vol. 95, p. 223902, 2005. [9] D. R. Smith, W. J. Padilla, and S. Schultz, "Composite medium with simultaneously negative permeability and permeability," Physical Review Letters, vol. 84, pp. 4184-4187, 2000. [10] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: Modeling of Flow of Light, 2nd ed. Princeton University, 2008. [11] J. W. S. Rayleigh, "On the remarkable phenomenon of crystalline reflexion described by prof. Stokes," [12] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, vol. 58, pp. 2059-2062, 1987. [13] S. John, "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, vol. 58, pp. 2486-2489, 1987. [14] T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Optics Express vol. 11, pp. 2589-2596, 2003. [15] M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Physical Review B, vol. 62, pp. 10696-10705, 2000. [16] C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry, "All-angle negative refraction without negative effective index," Physical Review B, vol. 65, 2002. [17] D. W. Prather et al., "Self-collimation in photonic crystal structures: a new paradigm for applications and device development," Applied Physics, vol. 40, pp. 2635-2651, 2007 [18] R. Gajić, R. Meisels, F. Kuchar, and K. Hingerl, "Refraction and rightness in photonic crystals," Optics Express, vol. 13, pp. 8596-8605, 2005. [19] S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Physical Review Letters, vol. 102, 2009. [20] M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Optics Letters, vol. 35, pp. 1593-1595, 2010. [21] M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. Freymann, "Polarization Stop Bands in Chiral Polymeric Three‐Dimensional Photonic Crystals," Advanced Materials, vol. 19, pp. 207-210, 2007. [22] J. K. Gansel et al., "Gold helix photonic metamaterial as broadband circular polarizer," Science, vol. 325, pp. 1513-1515, 2009. [23] M. Maldovan, A. M. Urbas, N. Yufa, W. C. Carter, and E. L. Thomas, "Photonic properties of bicontinuous cubic microphases," Physical Review B, vol. 65, no. 16, 2002. [24] K. Michielsen and D. G. Stavenga, "Gyroid cuticular structures in butterfly wing scales: biological photonic crystals," Journal of The Royal Society Interface, vol. 5, pp. 85-94, 2008. [25] V. Saranathan et al., "Structure, function, and self-assembly of single network gyroid (I4132) photonic crystals in butterfly wing scales," Proceedings of the National Academy of Sciences, vol. 107, pp. 11676-11681, 2010. [26] K. Hur, Y. Francescato, V. Giannini, S. A. Maier, R. G. Hennig, and U. Wiesner, "Three-dimensionally isotropic negative refractive index materials from block copolymer self-assembled chiral gyroid networks," Angewandte Chemie, vol. 50, pp. 11985-11989, 2011. [27] M. Saba et al., "Circular dichroism in biological photonic crystals and cubic chiral nets," Physical Review Letters, vol. 106, p. 103902, 2011. [28] G. E. Schroder-Turk et al., "The chiral structure of porous chitin within the wing-scales of Callophrys rubi," Journal of Structural Biology, vol. 174, pp. 290-295, 2011. [29] C. Mille, E. C. Tyrode, and R. W. Corkery, "3D titania photonic crystals replicated from gyroid structures in butterfly wing scales: approaching full band gaps at visible wavelengths," RSC Advances, vol. 3, pp. 3109-3117, 2013. [30] S. S. Oh, A. Demetriadou, S. Wuestner, and O. Hess, "On the origin of chirality in nanoplasmonic gyroid metamaterials," Advanced Materials, vol. 25, pp. 612-617, 2013. [31] M. D. Turner, M. Saba, Q. Zhang, B. P. Cumming, G. E. Schröder-Turk, and M. Gu, "Miniature chiral beamsplitter based on gyroid photonic crystals," Nature Photonics, vol. 7, pp. 801-805, 2013. [32] M. Saba, B. D. Wilts, J. Hielscher, and G. E. Schröder-Turk, "Absence of Circular Polarisation in Reflections of Butterfly Wing Scales with Chiral Gyroid Structure," Materials Today: Proceedings, vol. 1, pp. 193-208, 2014. [33] S. Yoshioka, H. Fujita, S. Kinoshita, and B. Matsuhana, "Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales," Journal of The Royal Society Interface, vol. 11, p. 20131029, 2014. [34] Y. Ye and S. He, "90° polarization rotator using a bilayered chiral metamaterial with giant optical activity," Applied Physics Letters, vol. 96, p. 203501, 2010. [35] Y. R. Li and Y. C. Hung, "Dispersion-free broadband optical polarization rotation based on helix photonic metamaterials," Optics Express, vol. 23, pp. 16772-16781, Jun 29 2015. [36] Z.-Y. Xie, L.-G. Sun, G.-Z. Han, and Z.-Z. Gu, "Optical Switching of a Birefringent Photonic Crystal," Advanced Materials, vol. 20, pp. 3601-3604, 2008. [37] A. Charlesby, "Effect of temperature on the structure of highly," Proceedings of the Physical Society, vol. 57, 1945. [38] T. Ichikawa, "The assembly of hard spheres as a structure model of amorphous iron," Physica Status Solidi A, vol. 29, pp. 293-302, 1975. [39] J. J. Kim, Y. Choi, S. Suresh, and A. Argon, "nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature," Science, vol. 295, pp. 654-657, 2002. [40] X. Li et al., "Tin-alloy heterostructures encapsulated in amorphous carbon nanotubes as hybrid anodes in rechargeable lithium ion batteries," Electrochimica Acta, vol. 89, pp. 387-393, 2013. [41] L. Morsdorf et al., "Phase selection and nanocrystallization in Cu-free soft magnetic FeSiNbB amorphous alloy upon rapid annealing," Journal of Applied Physics, vol. 119, p. 124903, 2016. [42] C.-M. Hsu et al., "High-Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Reflector," Advanced Energy Materials, vol. 2, pp. 628-633, 2012. [43] M. Treacy and K. Borisenko, "The local structure of amorphous silicon," Science, vol. 335, pp. 950-953, 2012. [44] J. W. Wang et al., "Two-phase electrochemical lithiation in amorphous silicon," Nano Letters, vol. 13, pp. 709-715, 2013. [45] H. J. Son et al., "Synthesis of fluorinated polythienothiophene co benzodithiophenes and effect of fluorination on the photovoltaic properties," Journal of the American Chemical Society, vol. 133, pp. 1885-1894, 2011. [46] Y. Chen, H. Cui, L. Li, Z. Tian, and Z. Tang, "Controlling micro-phase separation in semi-crystalline/amorphous conjugated block copolymers," Polymer Chemistry, vol. 5, pp. 4400-4404, 2014. [47] B. Dong et al., "Structural coloration and photonic pseudogap in natural random close-packing photonic structures," Optics Express, vol. 18, pp. 14430-14438, 2010. [48] B. Q. Dong et al., "Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis," Physical Review E, vol. 84, p. 11915, 2011. [49] S. F. Liew et al., "Photonic band gaps in three-dimensional network structures with short-range order," Physical Review A, vol. 84, 2011. [50] J. Haberko and F. Scheffold, "Fabrication of mesoscale polymeric templates for threedimensional disordered photonic materials," Optics Express, vol. 21, pp. 1057-1065, 2013. [51] P. V. d. Witte, P. J. Dijkstra, J. W. A. V. d. Berg, and J. Feijen, "Phase separation processes in polymer solutions in relation to membrane formation," Journal of Membrane Science, vol. 117, pp. 1-31, 1996. [52] L. Zhang, H. Shen, and A. Eisenberg, "Phase separation behavior and crew-cut micelle formation of polystyrene-b-poly (acrylic acid) copolymers in solutions," Macromolecules, vol. 34, pp. 1001-1011, 1997. [53] M. Svensson, P. Alexandridis, and P. Linse, "Phase behavior and microstructure in binary block copolymer/selective solvent systems: Experiments and theory," Macromolecules, vol. 32, pp. 637-645, 1999. [54] B. H. Jones and T. P. Lodge, "Nanocasting nanoporous inorganic and organic materials from polymeric bicontinuous microemulsion templates," Polymer Journal, vol. 44, pp. 131-146, 2012. [55] N. Yan and Y. Wang, "Reversible switch between the nanoporous and the nonporous state of amphiphilic block copolymer films regulated by selective swelling," Soft Matter, vol. 11, pp. 6927-6937, 2015. [56] V. Saranathan et al., "Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species," Journal of The Royal Society Interface, vol. 9, pp. 2563-2575, 2012. [57] K. Yee, "Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media," presented at the IEEE Transactions on Antennas and Propagation," 1966. [58] L. Brillouin, "Les électrons dans les métaux et le classement des ondes de de Broglie correspondantes," Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, vol. 191, p. 292, 1930. [59] H. J. Butt, K. Graf, and M. Kappl, Measurement of Adsorption Isotherms. Wiley-VCH, 2006. [60] J. d. R´ıo and S. Whitaker, "Maxwells equations in two-phase systems i: Local electrodynamic equilibrium," Transport in Porous Media, vol. 39, pp. 159-186, 2000. [61] H. Y. Hsueh et al., "Shifting networks to achieve subgroup symmetry properties," Advanced Materials, vol. 26, pp. 3225-3229, 2014. [62] L. D. S. Yadav, Ultraviolet and Visible Spectroscopy. 2005. [63] E. L. Lin, W. L. Hsu, and Y. W. Chiang, "Trapping Structural Coloration by a Bioinspired Gyroid Microstructure in Solid State," ACS Nano, vol. 12, pp. 485-493, 2018. [64] C. S. O'Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, "Jamming at zero temperature and zero applied stress: the epitome of disorder," Physical Review E, vol. 68, p. 11306, 2003. [65] G. J. Gao, J. Blawzdziewicz, and C. S. O'Hern, "Frequency distribution of mechanically stable disk packings," Physical Review E, vol. 74, p. 61304, 2006. [66] D. Carolan, H. M. Chong, A. Ivankovic, A. J. Kinloch, and A. C. Taylor, "Co-continuous polymer systems: A numerical investigation," Computational Materials Science, vol. 98, pp. 24-33, 2015. [67] C. R. Wronski, "Intrinsic and Light Induced Gap States in a-Si:H Materials and Solar Cells - Effects of Microstructure," Thin Solid Films, pp. 470-475, 2004. [68] F. Wooten, K. Winer, and D. Weaire, "computer generation of structural models of amorphous Si and Ge," Physical Review Letters, vol. 54, pp. 1392-1395, 1985. [69] G. T. Barkema and N. Mousseau, "High-quality continuous random networks," Physical Review B, vol. 62, pp. 4985-4990, 2000. [70] A. J. Stone and D. J. Wales, "Theoretical studies of icosahedral C60 and some related structures," Chemical Physics Letters, vol. 128, pp. 501-503, 1986. [71] P. N. Keating, "Effect of Invariance Requirements on the Elastic Strain Energy of Crystals with Application to the Diamond Structure," Physical Review, vol. 145, p. 637, 1966. [72] S. Imagawa and K. Edagawa, "Robustness and fragility of photonic bandgap in photonic amorphous diamond structures," Applied Physics A, vol. 123, p. 41, 2016. [73] M. Florescu, S. Torquato, and P. J. Steinhardt, "Designer disordered materials with large, complete photonic band gaps," Proceedings of the National Academy of Sciences, pp. 20658-20663, 2009. [74] S. R. Sellers, W. Man, S. Sahba, and M. Florescu, "Local self-uniformity in photonic networks," Nature Communications, vol. 8, p. 14439, 2017. [75] P. L. Chau and A. J. Hardwick, "A new order parameter for tetrahedral configurations," Molecular Physics, vol. 93, pp. 511-518, 1988. [76] R. M. Kaufmann, S. Khlebnikov, and B. W. Kaufmann, "The geometry of the double gyroid network: quantum and classical," Journal of Noncommutative Geometry, vol. 6, pp. 623-664, 2012. [77] B. P. Cumming, M. D. Turner, G. E. Schroder-Turk, S. Debbarma, B. Luther-Davies, and M. Gu, "Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass," Optics Express, vol. 22, pp. 689-698, 2014.
|