帳號:guest(18.191.222.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王權志
作者(外文):Wang, Chuan-Chih
論文名稱(中文):載波包絡相位穩定之超快光纖雷射
論文名稱(外文):Development of a Carrier-Envelope Phase Stabilized Ultrafast Fiber Laser
指導教授(中文):陳明彰
指導教授(外文):Chen, Ming-Chang
口試委員(中文):施宙聰
李建中
項維巍
口試委員(外文):Shy, Jow-Tsong
Lee, Chien-Chung
Hsiang, Wei-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:105066520
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:50
中文關鍵詞:載波包絡相位穩定飛秒光纖雷射f-to-2f干涉儀回授控制
外文關鍵詞:carrier-envelope phase stabilizationultrafast fiber laserf-to-2f heterodynefeedback control
相關次數:
  • 推薦推薦:0
  • 點閱點閱:46
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文建立了載波包絡相位穩定的飛秒光纖雷射,使用極化保持光纖的架構得到脈衝寬度110 fs,脈衝重複率47 MHz與脈衝能量為13.4 nJ的自啟動雷射後,利用光子晶體光纖產生超連續光譜,並以f-to-2f干涉儀量測載波包絡偏移頻率,再藉由比例積分微分控制(PID control)回授雷射泵浦電流以穩定載波包絡相位。穩定時所測得之相位噪音為2.3 rad[由3.3 kHz積分至1 MHz]。
We constructed a carrier-envelope-phase-stabilized fiber laser, with a repetition rate of 47 MHz, pulse duration of 110 fs and pulse energy of 13.4 nJ in an all polarization maintaining architecture. A photonic crystal fiber was used for supercontinuum generation, and a f-to-2f heterodyne setup was used for carrier-envelope-offset frequency detection. Then a feedback system based on proportional-integral-derivative control was used to stabilize the offset frequency through tuning the pump current of the oscillator. The phase noise of the stabilized f_CEO beat was reduced to below 2.3 rad [integrating from 3.3 kHz to 1 MHz].
摘要.........................................i
Abstract....................................ii
誌謝.......................................iii
第1章 研究動機...............................1
第2章 載波包絡相位與載波包絡偏移頻率........4
2.1 量測載波包絡偏移頻率...................4
2.2 控制載波包絡偏移頻率...................5
2.3 鎖模雷射的雜訊.........................6
第3章 光纖雷射系統與載波包絡偏移頻率量測....10
3.1 鎖模雷射.............................10
3.2 光纖雷射系統..........................12
3.3 超連續光譜............................18
3.4 f-2f干涉儀............................21
第4章 穩定載波包絡相位.....................30
4.1 回授系統..............................30
4.2 轉移函數..............................31
4.3 比例積分微分控制器.....................34
4.4 相位噪音..............................40
第5章 結論與未來展望.......................45
參考文獻.....................................46
[1] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[2] A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase Matched Generation of Coherent Soft X-rays,” Science 280, 1412–1415 (1998).
[3] G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R.Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).
[4] S. Baker, J. S. Robinson, C. A. Haworth, H. Teng, R. A. Smith, C. C. Chirila, M. Lein, J. W. G. Tisch, and J. P.Marangos, “Probing proton dynamics in molecules on an attosecond time scale,” Science 312, 424–427 (2006).
[5] G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, “Absolute phase phenomena in photoionization with few-cycle laser pulses,” Nature 414, 182–184 (2001).
[6] A Baltuˇska, T Udem, M Uiberacker, M Hentschel, E Goulielmakis, C Gohle, R Holzwarth,VS Yakoviev, A Scrinzi, TW Hänsch, and F Krausz, “Attosecond control of electronic processes by intense light fields,” Nature, 421, 611–615 (2003).
[7] Hänsch, T. W. Nobel Lecture: Passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).
[8] Andrew Weiner, “Ultrafast Optics,” Wiley Publishing (2009).
[9] G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1, 290-298 (2014).
[10] T. Udem, J. Reichert, R. Holzwarth, and T. Hänsch, “Absolute Optical Frequency Measurement of the Cesium D1 Line with a Mode-Locked Laser,” Phys. Rev. Lett., Vol. 82, 3568–3571 (1999).
[11] Jun Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: From frequency metrology to optical phase control,” IEEE J. Sel. Topics Quantum Electron, vol. 9, no. 4, 1041–1058 (2003).
[12] S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766-768 (2002).
[13] N. R. Newbury and B. R. Washburn, “Theory of the frequency comb output from a femtosecond fiber laser,” IEEE J. of Quantum Electron. 41, 1388-1402 (2005).
[14] Jun Dong, Michael Bass, Yanli Mao, Peizhen Deng, and Fuxi Gan, “Dependence of the Yb3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975-1979 (2003).
[15] Peng Li, Guizhong Wang, Chen Li, Aimin Wang, Zhigang Zhang, Fei Meng, Shiying Cao, and Zhanjun Fang, “Characterization of the carrier envelope offset frequency from a 490 MHz Yb-fiber-ring laser,” Opt. Express 20, 16017-16022 (2012).
[16] R. Paschotta, “Noise of mode-locked lasers (part I): numerical model,” Applied Physics B 79, 153-162 (2004).
[17] R. Paschotta, “Noise of mode-locked lasers (part II): timing jitter and other fluctuations,” Applied Physics B 79, 163-173 (2004).
[18] Lee, Chien-Chung, “Low-Noise Mode locked Lasers: Pulse Dynamics, Feedback Control, and Novel Actuators,” (2015). Physics Graduate Theses & Dissertations. 148.
[19] Jungwon Kim and Youjian Song, “Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications,” Adv. Opt. Photon. 8, 465-540 (2016).
[20] Brian R. Washburn, Scott A. Diddams, Nathan R. Newbury, Jeffrey W. Nicholson, Man F. Yan, and Carsten G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250-252 (2004).
[21] H.A. Haus, “Mode-Locking of Lasers,” IEEE J. of Select. Topics in Quant. Electron., vol. 6, 1173-1185 (2000).
[22] Govind P. Agrawal, “Nonlinear Fiber Optics,” (Fifth Edition), Academic Press (2013).
[23] D. J. Kuizenga and A. E. Siegman, “FM and AM mode locking of the homogeneous laser—Part I: Theory,” IEEE J. Quantum Electron., vol. QE-6, 694–708 (1970).
[24] V. Matsas, T. Newson, D. Richardson, and D. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarization rotation,” Electronics Letters 28,1391-1393 (1992).
[25] L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl.Phys. B 65(2), 277–294 (1997).
[26] Irl N. Duling, “All-fiber ring soliton laser mode locked with a nonlinear mirror,” Opt. Lett. 16, 539-541 (1991).
[27] N. J. Doran and David Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56-58 (1988).
[28] Zhanwei Liu, Zachary M. Ziegler, Logan G. Wright, and Frank W. Wise, “Megawatt peak power from a Mamyshev oscillator,” Optica 4, 649-654 (2017).
[29] D. Kopf, G. Zhang, R. Fluck, M. Moser, and U. Keller, “All-in-one dispersion-compensating saturable absorber mirror for compact femtosecond laser sources,” Opt. Lett. 21, 486-488 (1996).
[30] S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, “Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers,” Opt. Lett. 29, 1581-1583 (2004).
[31] H. Zhang, D. Y. Tang, L. M. Zhao, Q. L. Bao, and K. P. Loh, “Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene,” Opt. Express 17, 17630-17635 (2009).
[32] U. Keller, “Recent developments in compact ultrafast lasers,” Nature, vol. 424, 831-838 (2003).
[33] U. Keller, K.J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Hönninger, N. Matuschek, J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAMs) for femtosecond to nanosecond pulse generation in solid-state lasers,” IEEE J. Sel. Top. Quantum Electron, vol. 2, 435 (1996).
[34] T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevicius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nature Photonics 2, 355-359 (2008).
[35] Yihan Li, Naoya Kuse, Antoine Rolland, Yuriy Stepanenko, Czesław Radzewicz, and Martin E. Fermann, “Low noise, self-referenced all polarization maintaining Ytterbium fiber laser frequency comb,” Opt. Express 25, 18017-18023 (2017).
[36] Xun Gu, Mark Kimmel, Aparna P. Shreenath, Rick Trebino, John M. Dudley, Stéphane Coen, and Robert S. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697-2703 (2003).
[37] V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, “Self-similar propagation of parabolic pulses in normal-dispersion fiber amplifiers,” J. Opt. Soc. Am. B 19, 461-469 (2002).
[38] J. L. Hall, M. S. Taubman, and J. Ye, “Laser stabilization in Handbook of Optics,” (Optical Society of America, 2000), chap. 27.
[39] Adrian Schlatter, S. C. Zeller, R. Grange, R. Paschotta, and U. Keller, “Pulse-energy dynamics of passively mode-locked solid-state lasers above the Q-switching threshold,” J. Opt. Soc. Am. B 21, 1469-1478 (2004).
[40] Norman S. Nise, “Control systems engineering,” 7th edition, Wiley, ISBN: 978-1-118-80063-8 (2014).
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *