帳號:guest(3.144.85.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭至清
作者(外文):Cheng, Chih-Ching
論文名稱(中文):利用快速熱熔磊晶法在矽基板製備銻化鎵微碟共振腔
論文名稱(外文):Fabrication of GaSb Microdisk Resonators on Silicon Substrate by Rapid-Melting-Growth Process
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):吳孟奇
王立康
口試委員(外文):Wu, Meng-Chyi
Wang, Li-Karn
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:105066518
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:48
中文關鍵詞:快速熱熔磊晶法銻化鎵微碟共振腔耳語廊模態異質整合
外文關鍵詞:Rapid melt growthGallium antimonideMicrodisk resonatorWhispering-Gallery ModeHeterogeneous integration
相關次數:
  • 推薦推薦:0
  • 點閱點閱:277
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文致力將光源與矽基板整合,我們提出利用快速熱熔磊晶法(RMG)製備銻化鎵微碟共振腔於矽基板,因為銻化鎵熔點在712℃,而矽的熔點為1414℃。要將III-V整合在矽基板上,需要面對的困難點包含銻化鎵與矽的晶格不匹配達13%,銻化鎵的熱膨脹係數又高達矽的3倍,且銻化鎵以同相位排列ABABA,倘若不同相位排列則會形成反相位域(antiphase domain)。
過去許多的三五族異質整合運用的方法為分子束磊晶(MBE)與有機金屬化學氣相沉積法(MOCVD)製備,但本實驗是以電子束及熱蒸鍍共蒸鍍銻鎵薄膜,利用鍍率去控制膜厚、濃度以及粗糙度,雖然製備出來的品質不如MBE以及MOCVD,但仍可藉由RMG的方式做修復。
至於光學結構方面我們利用微碟(microdisc)作為我們共振腔的結構,我們利用有限差分時域方法模擬微碟結構中的共振頻譜,當銻化鎵的厚度為320 nm與微碟直徑為5 μm,自由光譜範圍(FSR)為48.2 nm。
接著藉由改變退火參數、多層堆疊參數、去除核窗之原生氧化層方法,來優化薄膜磊晶的品質,最理想的製程條件為單次加溫到融點之上、純銻層以3 nm、3 nm與4 nm的多層堆疊結構蒸鍍以及以浸泡稀釋氫氟酸60秒去除原生氧化層,獲得最高的PL訊號強度約為15000 a.u.,再將最好的製程條件應用在微碟結構並且獲得在光譜上有特定波長上有強度上的放大,自由光譜範圍(FSR)為33.4 nm。本實驗主要判別晶相、發光效率與表面粗糙度,運用原子力顯微鏡(AFM)、光致發光系統(PL)、穿透式顯微鏡(TEM)、EDS與選區電子繞射圖(SEAD)等等量測工具。
In this thesis, we focus on integrate the light source with the silicon substrate. We propose rapid melt growth (RMG) method to fabricate GaSb microdisk resonator on the silicon substrate. Because the melting point of GaSb and Si are 712 ℃ and 1414℃. In order to integrate III-V on the Si substrate, there are some problems to be solved. Difficulties include that the lattice mismatch between GaSb and Si is up to 13%, and the thermal expansion coefficient of GaSb is up to three times that of Si, and GaSb is arranged in the same phase as ABABA, and if different phases are arranged, an anti-phase domain is formed.
In the past, many of the III-V heterogeneous integration methods were fabricated by molecular beam epitaxy (MBE) and metal organometallic chemical vapor deposition (MOCVD). However, we deposit Ga and Sb by electron beam and thermal evaporation. We can optimize deposition rate to control the film thickness, element concentration and roughness. Although the quality is not as good as MBE and MOCVD, it can be repaired by RMG.
For the optical structure, we choose microdisc as the structure of our resonant cavity. We use the finite difference time domain method (FDTD) to simulate the resonance spectrum in the microdisc structure. When the thickness of GaSb is 320 nm and the diameter of the microdisc is 5 μm. The free spectral range (FSR) is 48.2 nm.
Then, by changing the annealing parameters, the multi-layer stacking parameters, and the method of removing the native oxide layer at the seed window, the quality of the film layer is optimized. The optimal process conditions are a single heating to the melting point. The pure Sb layer is deposited by a multi-layer stack structure of 3 nm, 3 nm and 4 nm, and the native oxide layer is removed by D-HF for 60 seconds. The highest PL intensity of about 15000 a.u.. We applied this best conditions on microdisc structure. At a specific wavelength, it is obtained to have intensity amplification on the spectrum, and the free spectral range (FSR) is 33.4 nm.
In this experiment, the material is characterized by Photoluminescence (PL), Transmission Electron Microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDS), Selective Area Diffraction pattern (SAD), atomic force microscopy (AFM) and so on.
Abstract I
摘要 III
目錄 VII
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文架構 6
第二章 快速熱熔磊晶法背景介紹 7
2.1 銻化鎵元素介紹 7
2.2 矽基板與銻化鎵的異質整合之缺陷來源 9
2.3 快速熱熔磊晶法 13
2.4 共振腔中自發輻射 16
2.5 模擬微碟結構中的共振頻譜 17
第三章 元件製作及量測系統 19
3.1 元件製作流程圖 19
3.2 元件製作細節以及重要參數 20
3.3 光致發光(PL)量測系統架設 27
第四章 實驗量測與分析 30
4.1 多層堆疊參數對磊晶的影響 31
4.2 去除核窗之原生氧化層對磊晶的影響 35
4.3 熱退火參數對磊晶的影響 36
4.4 銻鎵比例對微碟共振腔之譜線的影響 39
第五章 結果與討論 44
5.1 結論 44
5.2 改善 45
參考資料 47
[1] H.R. Philipp and E.A. Taft, “Optical constants of silicon in the Region 1 to 10 eV,” Physical Review, vol. 120, No. 1, 1960
[2] Zhiping Zhou, Bing Yin and Jurgen Michel, "On-chip light sources for silicon photonics," Light: Science & Applications, 2015
[3] Gerald M. Miller, Ryan M. Briggs, and Harry A. Atwater, "Achieving optical gain in waveguide-confined nanocluster-sensitized erbium by pulsed excitation," Journal of Applie Physics, 2010
[4] L. Dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T.-W. F. Chang, V. Sukhovatkin, and E. H. Sargent, "Light emiision efficiency and dynamics in silicon-rich silicon nitride films," Applied Physics Letters, 2006
[5] Jifeng Liu, Rodolfo Camacho-Aguilera, Jonathan T. Bessete, Xiaochen Sun, Xiaoxin Wang, Yan Cai, Lionel C. Kimerling and Jurgen Michel, "Ge-on-Si optoelectronics," Thin Solid Films, 2012
[6] S. Keyvaninia, M. Muneeb, S. Stanković, P. J. Van Veldhoven, D. Van Thourhout, and G. Roelkens, " Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on insulator substrate," Optical Materials Express, vol. 3, No. 1, 2013
[7] H. Ghafouri-Shiraz, " Distributed Feedback Laser Diodes and Optical Tunable Filters," John Wiley & Sons Ltd, 2003
[8] Sadao Adachi, "Optical Constans of Crystalline and Amorphous Semiconductos," Springer Science Business Media, pp 227-228, 1999.
[9] T.L Ngai, R.C. Sharma, and Y.A. Chang, "The Ga-Sb (Gallium-Antimony) System," Bulletin of Alloy Phase Diagrams, vol. 9, No. 5, 1988.
[10] Ravindiran Munusami and Shankar Prabhakar, "Group III–V Semiconductor High Electron Mobility Transistor on Si Substrate," intechppen, pp 89-99, 2017.
[11] Bahri M., Largeau L., Mauguin O., Patriarche G., Madiomanana K., Rodriguez J. B., et al., "Structural characterization of GaSb-based heterostructures grown on Si," ANR, 2012.
[12] Shahrzad Hosseini Vajargah, M. A. Sc., "Investigation of Interface, Defects, and Growth of GaSb/Si Heteroepitaxial Films using Aberration-Corrected Scanning Transmission Electron Microscopy," McMaster University, 2013.
[13] Yaocheng Liu, Michael D. Deal, and James D. Plummer, "High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates," Applied Physics Letters, vol. 84, no. 14, 2004
[14] S. Chen, "Design and process for three-dimensional heterogeneous integration," J. L. Plummer, P. B. Griffin, and Y. Nishi, Eds., ed, 2010, pp. 57-61.
[15] Takahiro Numai, " Fundamentals of Semiconductor Lasers," Springer Series in Optical Sciences, pp 227-230
[16] 林政宇, "銻化鎵表面鈍化處理之特性分析與研究," 國立清華大學光電工程研究所, pp 38-46 , 2018.
[17] 紀國鐘, 蘇炎坤, 褚宏深, and 吳孟奇, "光電半導體技術手冊," 台灣電子材料與元件協會出版, pp. 27-44, 2002.
[18] S. Farrell, G. Brill, Y. Chen,2 P.S. Wijewarnasuriya, Mulpuri V. Rao, N. Dhar, and K. Harris, " Ex Situ Thermal Cycle Annealing of Molecular Beam Epitaxy Grown HgCdTe/Si Layers," Journal of Electronic Materials, vol.39, No. 1, 2010.
[19] Fumio Sasaki, Hiroyuki Mochizuki, Ying Zhou, Yoriko Sonoda, and Reiko Azumi, "Optical pumped lasing in solution processed perovskite semiconducting materials: Self-assembled microdisk lasing," Japanese Journal of Applied Physics, vol. 55, 2016
[20] Shu-Lu Chen, Peter B. Griffin, and James D. Plummer, "Single-Crystal GaAs and GaSb on Insulator on Bulk Si Substrates Based on Rapid Melt Growth," IEEE Electron Device Letters, vol. 31, no. 6, 2010

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *