帳號:guest(3.147.27.71)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊梓鍵
作者(外文):Yang, Zi-Jian
論文名稱(中文):改質DNA生物高分子之雙極電阻轉換元件尺寸依賴性研究
論文名稱(外文):Study of size-dependent bipolar resistive switching responses of modified biopolymer devices
指導教授(中文):洪毓玨
指導教授(外文):Hung, Yu-Chueh
口試委員(中文):李明昌
莊偉綜
口試委員(外文):Li, Ming-Chang
Chuang, Wei-Tsuing
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:105066516
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:52
中文關鍵詞:脫氧核醣核酸表面改質非揮發性記憶體電阻式記憶體雙極電極轉換電流傳導機制
外文關鍵詞:deoxyribonucleic acidsurface modificationNon-Volatile memoryResistive random-access memorybipolar resistive switchingCurrent conduction mechanism
相關次數:
  • 推薦推薦:0
  • 點閱點閱:107
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現今在許多電子產品中,記憶體扮演著非常重要的角色,隨著電子產品逐漸變得輕薄短小,電子元件尺寸的微小化成為目前所面臨的挑戰。為了解決尺寸縮小的問題,以電阻轉換方式的新型記憶體越來越受到關注,其原因為具有簡單結構、快速的寫入電壓以及良好的尺寸可調性。在先前的研究上,DNA高分子聚合物在電阻式記憶體的應用上具有很好的發展潛力,因此為了更進一步的應用,了解DNA 元件在不同尺寸下的特性為重要的課題。
本篇論文中,我們研究以DNA高分子聚合物為主體的電阻式隨機儲存記憶體的特性。第一個部分,我們探討元件面積尺寸對電性的影響,製作出兩種面積差異900倍的元件並且進行特性分析,包含寫入及抹除電壓統計分析以及開關電流比,並探討兩種元件的電流傳導機制。第二個部分,我們探討不同DNA薄膜厚度對電性的影響,我們製作出4種不同DNA薄膜厚度的元件,其範圍從50nm到200nm,並且分析與比較數種電性。我們也藉由掃描式電子顯微鏡(SEM)觀察及討論電阻絲在DNA材料中的形成機制。我們的研究提供了DNA元件在不同尺寸下的特性探討,可用於DNA記憶體元件的設計與應用。
Memory devices play important roles in many electrons in the modern era. As the electronics have evolved to be smaller and lighter, down-scaling of devices becomes a challenging issue. To resolve the issue, new types of memory devices based on resistive switching has attracted increasing attention due to simpler structure, fast writing-speed and scalability. Previously deoxyribonucleic acid (DNA) biopolymer has been demonstrated as a promising material for resistive switching memory devices. It is important to study the properties at the different device scales for advanced applications.
In this study, we investigate properties of DNA biopolymer-based resistive random access memory(RRAM). In the first part, we study the effect of device area on the electrical properties. Two sizes of devices, with area difference by a factor of 900, are fabricated and measured. The statistics of set/reset voltages and On/Off current ratio are characterized and analyzed. Then the current conduction mechanisms are discussed for devices with different sizes. In the second part of this study, we examine the effect of film thickness on the electrical properties. DNA biopolymer layer with four different thickness, ranging from 50nm to 200nm, are fabricated and the IV characteristics are analyzed. The performances are evaluated and compared by many electrical properties and the mechanisms are discussed. The filament formation in the DNA biopolymer matrix is examined by scanning electronic microscope (SEM). Our study provides a systematic investigation on the scaling properties of DNA biopolymer-based memory devices, which can be used for design guidelines for more advanced implementation。
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 電阻式記憶體簡介 2
1.2.1 電阻式記憶體的發展 2
1.2.2 電阻式記憶體的機制 3
1.3 電極與介電質傳導機制 5
1.3.1 電極限制傳導機制(electrode-limited conduction mechanisms) 5
1.3.2 塊材限制傳導機制(Bulk-limited conduction mechanism) 7
1.4 有機材料電阻式記憶體簡介 10
1.5 DNA高分子材料介紹與應用 10
1.6 研究動機 13
第二章 實驗方法 14
2.1 材料製備 14
2.1.1 DNA-CTMA合成製備 14
2.2 記憶體元件的製作 15
2.2.1 垂直式元件製成 15
2.2.2 平面式元件製成 16
2.2.3 量測儀器 18
第三章 元件特性量測 22
3.1 不同元件面積之特性分析 22
3.1.1 電流-電壓特性 22
3.1.2 開關電流比(On/Off Current Ratio)分析 25
3.1.3 寫入電壓(Vset)及抹除電壓(Vreset)分析 27
3.1.4 電流傳導機制分析 29
3.2 小面積元件之特性分析 31
3.2.1 開關電流比(On/Off Current Ratio)分析 31
3.2.2 寫入電壓(Vset)及抹除電壓(Vreset)分析 34
3.2.3 寫入限制電流分析 36
3.2.4 電流傳導機制分析 37
第四章 電阻轉換機制驗證及討論 39
4.1 電阻轉換機制假設模型 39
4.2 銀電阻絲在DNA-CTMA薄膜中之形貌 41
第五章 結果與未來展望 44
參考文獻 45
[1] C. I. L. de Araujo, S. G. Alves, L. D. Buda-Prejbeanu, and B. Dieny, "Multilevel Thermally Assisted Magnetoresistive Random-Access Memory Based on Exchange-Biased Vortex Configurations," (in English), Physical Review Applied, vol. 6, no. 2, Aug 23 2016.
[2] Y. G. Lu, S. N. Song, Z. T. Song, D. N. Yao, W. Xi, W. J. Yin, H.Zheng, S. L. Feng, "Phase Change Memory Based on (Sb2Te3)(0.85)-(HfO2)(0.15) Composite Film," (in English), Applied Physics Express, vol. 3, no. 11, 2010.
[3] B. K. You, J. M. Kim, D, J. Joe, K. Yang, Y. Sin, Y. S. Jung, K. J. Lee, "Reliable Memristive Switching Memory Devices Enabled by Densely Packed Silver Nanocone Arrays as Electric -Field Concentrators," (in English), Acs Nano, vol. 10, no. 10, pp. 9478-9488, Oct 2016.
[4] Y. T. Li, S. B. Long, Q. Liu, H. B. Lu, S. Liu, and M. Liu, "An overview of resistive random access memory devices," (in English), Chinese Science Bulletin, vol. 56, no. 28-29, pp. 3072-3078, Oct 2011.
[5] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," (in English), Nature Materials, vol. 6, no. 11, pp. 833-840, Nov 2007.
[6] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges," Advanced Materials, vol. 21, no. 25‐26, pp. 2632-2663, 2009.
[7] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, "Electrochemical metallization memories-fundamentals, applications, prospects (vol 22, 254003, 2011)," (in English), Nanotechnology, vol. 22, no. 28, Jul 15 2011.
[8] Y. Lu, J. H. Lee, and I. W. Chen, "Scalability of voltage-controlled filamentary and nanometallic resistance memory devices," Nanoscale, 10.1039/C7NR02915B vol. 9, no. 34, pp. 12690-12697, 2017.
[9] G. Sassine, C. Cagli, J. F. Nodin, G. Molas, and E. Nowak, "Novel Computing Method for Short Programming Time and Low Energy Consumption in HfO2 Based RRAM Arrays," (in English), Ieee Journal of the Electron Devices Society, vol. 6, no. 1, pp. 696-702, 2018.
[10] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, K. Kim, "A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures," Nature Materials, Article vol. 10, p. 625, 07/10/online 2011.
[11] I. Valov, "Redox-Based Resistive Switching Memories (ReRAMs): Electrochemical Systems at the Atomic Scale," (in English), Chemelectrochem, vol. 1, no. 1, pp. 26-36, Jan 3 2014.
[12] F. Pan, C. Chen, Z. S. Wang, Y. C. Yang, J. Yang, and F. Zeng, "Nonvolatile resistive switching memories-characteristics, mechanisms and challenges," (in English), Progress in Natural Science-Materials International, vol. 20, no. 1, pp. 1-15, Nov 2010.
[13] S. Tappertzhofen, E. Linn, S. Menzel, R. Waser, and I. Valov, "Quantum size effects and non-equilibrium states in nanoscale silicon dioxide based resistive switches," in 2014 Silicon Nanoelectronics Workshop (SNW), 2014, pp. 1-2.
[14] K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, "Quantized conductance atomic switch," Nature, vol. 433, p. 47, 01/06/online 2005.
[15] T. Tohru, H. Tsuyoshi, T. Kazuya, and A. Masakazu, "Conductance quantization and synaptic behavior in a Ta 2 O 5 -based atomic switch," Nanotechnology, vol. 23, no. 43, p. 435705, 2012.
[16] S. Tappertzhofen, E. Linn, S. Menzel, A. J. Kenyon, R. Waser, and I. Valov, "Modeling of Quantized Conductance Effects in Electrochemical Metallization Cells," IEEE Transactions on Nanotechnology, vol. 14, no. 3, pp. 505-512, 2015.
[17] H. Lv, X. X. Xu, P. X. Sun, H. T. Liu, Q. Luo, Q. Liu, W. Banerjee, H. T. Sun, S. B. Long, L. Li, M. Liu, "Atomic View of Filament Growth in Electrochemical Memristive Elements," Scientific Reports, Article vol. 5, p. 13311, 08/21/online 2015.
[18] A. Prakash, D. Jana, and S. Maikap, "TaO(x) -based resistive switching memories: prospective and challenges," (in English), Nanoscale Research Letters, vol. 8, Oct 9 2013.
[19] X. Zhu, W. Su, Y. Liu, B. L. Hu, L. Pan, W. Lu, J. D. Zhang, R. W. Li "Observation of Conductance Quantization in Oxide-Based Resistive Switching Memory," Advanced Materials, vol. 24, no. 29, pp. 3941-3946, 2012.
[20] Y.-E. Syu, T. C. Chang, J. H. Lou, T. M. Tsai, K. C. Chang, M. J. Tsai, Y. L. Wang, M. Liu, S. M. Sze, "Atomic-level quantized reaction of HfOx memristor," Applied Physics Letters, vol. 102, no. 17, p. 172903, 2013.
[21] E. Miranda, S. Kano, C. Dou, K. Kakushima, J. Suñé, and H. Iwai, "Nonlinear conductance quantization effects in CeOx/SiO2-based resistive switching devices," Applied Physics Letters, vol. 101, no. 1, p. 012910, 2012.
[22] J. J. Yang, I. H. Inoue, T. Mikolajick, and C. S. Hwang, "Metal oxide memories based on thermochemical and valence change mechanisms," (in English), Mrs Bulletin, vol. 37, no. 2, pp. 131-137, Feb 2012.
[23] S. V. Meschel, J. Pavlu, and P. Nash, "The thermochemical behavior of some binary shape memory alloys by high temperature direct synthesis calorimetry," (in English), Journal of Alloys and Compounds, vol. 509, no. 17, pp. 5256-5262, Apr 28 2011.
[24] G. C. Wang, G. Yang, Y. B. Huang, and J. J. Wang, "Effect of heat treatment and thermochemical treatment on linear recovery property of TiNi shape memory alloy," (in English), Advanced Engineering Materials, vol. 8, no. 1-2, pp. 107-111, Feb 2006.
[25] J. G. Simmons, "Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film," Journal of Applied Physics, vol. 34, no. 6, pp. 1793-1803, 1963.
[26] R. Perera, A. Ikeda, R. Hattori, and Y. Kuroki, "Trap assisted leakage current conduction in thin silicon oxynitride films grown by rapid thermal oxidation combined microwave excited plasma nitridation," Microelectronic Engineering, vol. 65, no. 4, pp. 357-370, 2003/05/01/ 2003.
[27] F. C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," (in English), Advances in Materials Science and Engineering, 2014.
[28] A. Rose, "Space-Charge-Limited Currents in Solids," Physical Review, vol. 97, no. 6, pp. 1538-1544, 03/15/ 1955.
[29] S. Yohan, L. Sangyouk, A. Ilsin, S. Chulgi, and J. Heejun, "Conduction mechanism of leakage current due to the traps in ZrO2 thin film," Semiconductor Science and Technology, vol. 24, no. 11, p. 115016, 2009.
[30] K. Zheng, J. L. Zhao, K. S. Leck, K. L. Teo, E. G. Yeo, and X. W. Sun, "A ZnTaOx Based Resistive Switching Random Access Memory," (in English), Ecs Solid State Letters, vol. 3, no. 7, pp. Q36-Q39, 2014.
[31] P. N. Murgatroyd, "Theory of space-charge-limited current enhanced by Frenkel effect," Journal of Physics D: Applied Physics, vol. 3, no. 2, p. 151, 1970.
[32] V. Ilia and N. K. Michael, "Cation-based resistance change memory," Journal of Physics D: Applied Physics, vol. 46, no. 7, p. 074005, 2013.
[33] V. Ilia, W. Rainer, R. J. John, and N. K. Michael, "Electrochemical metallization memories—fundamentals, applications, prospects," Nanotechnology, vol. 22, no. 28, p. 289502, 2011.
[34] N. F. Mott and E. A. Davis, "Electronic processes in non-crystalline materials," Clarendon Press: Oxford, UK, 1971.
[35] M. P. Houng, Y. H. Wang, and W. J. Chang, "Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model," Journal of Applied Physics, vol. 86, no. 3, pp. 1488-1491, 1999.
[36] H. Ha and O. Kim, "Bipolar switching characteristics of nonvolatile memory devices based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) thin film," Applied Physics Letters, vol. 93, no. 3, p. 033309, 2008/07/21 2008.
[37] D. I. Son, T. W. Kim, J. H. Shim, J. H. Hung, D. U. Lee, J. M. Lee, W. Park, W. K. Choi, "Flexible Organic Bistable Devices Based on Graphene Embedded in an Insulating Poly(methyl methacrylate) Polymer Layer," Nano Letters, vol. 10, no. 7, pp. 2441-2447, 2010/07/14 2010.
[38] S. Paul, A. Kanwal, and M. Chhowalla, "Memory effect in thin films of insulating polymer and C 60 nanocomposites," Nanotechnology, vol. 17, no. 1, p. 145, 2006.
[39] Q. Lai, Z. Zhu, Y. Chen, S. Patil, and F. Wudl, "Organic nonvolatile memory by dopant-configurable polymer," Applied Physics Letters, vol. 88, no. 13, p. 133515, 2006.
[40] W.-J. Joo, T.-L. Choi, K.-H. Lee, and Y. Chung, "Study on Threshold Behavior of Operation Voltage in Metal Filament-Based Polymer Memory," The Journal of Physical Chemistry B, vol. 111, no. 27, pp. 7756-7760, 2007/07/01 2007.
[41] W.-J. Joo, T. L. Choi, J.Lee, S. K. Lee, M. S. Jung, N. Kim, J. M. Kim, "Metal Filament Growth in Electrically Conductive Polymers for Nonvolatile Memory Application," The Journal of Physical Chemistry B, vol. 110, no. 47, pp. 23812-23816, 2006/11/01 2006.
[42] L. P. Ma, J. Liu, and Y. Yang, "Organic electrical bistable devices and rewritable memory cells," Applied Physics Letters, vol. 80, no. 16, pp. 2997-2999, 2002.
[43] M. Lauters, B. McCarthy, D. Sarid, and G. E. Jabbour, "Nonvolatile multilevel conductance and memory effects in organic thin films," Applied Physics Letters, vol. 87, no. 23, p. 231105, 2005.
[44] R. S. Potember, T. O. Poehler, and D. O. Cowan, "Electrical switching and memory phenomena in Cu‐TCNQ thin films," Applied Physics Letters, vol. 34, no. 6, pp. 405-407, 1979.
[45] S. Gao, C. Song, C. Chen, F. Zeng, and F. Pan, "Formation process of conducting filament in planar organic resistive memory," Applied Physics Letters, vol. 102, no. 14, p. 141606, 2013.
[46] N. Kobayashi and K. Nakamura, "DNA electronics and photonics,in Electronic Processes in Organic Electronics," Springer, pp. 253-281, 2015.
[47] Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, C. D. Mao, "Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra," Nature, vol. 452, p. 198, 03/13/online 2008.
[48] T. Takeshima, L. Sun, Y. Q. Wang, Y. Yamada, N. Nishi "Salmon milt DNA as a template for the mass production of Ag nanoparticles," Polymer Journal, Original Article vol. 46, p. 36, 06/26/online 2013.
[49] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, "A DNA-based method for rationally assembling nanoparticles into macroscopic materials," Nature, vol. 382, p. 607, 08/15/online 1996.
[50] T. B. Singh, N. S. Sariciftci, and J. G. Grote, "Bio-Organic Optoelectronic Devices Using DNA," (in English), Organic Electronics, vol. 223, pp. 189-212, 2010.
[51] J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, "Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer," Applied Physics Letters, vol. 88, no. 17, p. 171109, 2006.
[52] B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, "Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric," Journal of Applied Physics, vol. 100, no. 2, p. 024514, 2006.
[53] V. Kolachure and M. H. Jin, "Fabrication of P3HT/PCBM bulk heterojunction solar cells with DNA complex layer," in 2008 33rd IEEE Photovoltaic Specialists Conference, 2008, pp. 1-5.
[54] T. B. Rujoiu, A. Petris, V. I. Vlad, I. Rau, A. M. Manea, and F. Kajzar, "Lasing in DNA-CTMA doped with Rhodamine 610 in butanol," (in English), Physical Chemistry Chemical Physics, vol. 17, no. 19, pp. 13104-13111, 2015.
[55] A. J. Steckl, "DNA – a new material for photonics?," Nature Photonics, vol. 1, p. 3, 01/01/online 2007.
[56] X. L. Shao, J. S. Zhao, K. L. Zhang, R. Chen, K. Sun, C. J. Chen, K. Liu, L. W. Zhou, J. Y. Wang, C. M. Ma, K. J. Yoon, C. S. Hwang, "Two-Step Reset in the Resistance Switching of the Al/TiOx/Cu Structure," ACS Applied Materials & Interfaces, vol. 5, no. 21, pp. 11265-11270, 2013/11/13 2013.
[57] Z. Ma, C. Wu, D. U. Lee, F. Li, and T. W. Kim, "Carrier transport and memory mechanisms of multilevel resistive memory devices with an intermediate state based on double-stacked organic/inorganic nanocomposites," Organic Electronics, vol. 28, pp. 20-24, 2016/01/01/ 2016.
[58] N. J. Lee, T. S. Kang, Q. Hu, T.S. Lee, T.S. Yoon, H.H. Lee, E. J. Yoo, "Tri-state resistive switching characteristics of MnO/Ta2O5 resistive random access memory device by a controllable reset process," Journal of Physics D: Applied Physics, vol. 51, no. 22, p. 225102, 2018.
[59] J. Xu, D. Xie, T. T. Feng, C. H. Zhang, X. W. Zhang, P. G. Peng, D. Fu, H.Qian, "Scaling-down characteristics of nanoscale diamond-like carbon based resistive switching memories," Carbon, vol. 75, pp. 255-261, 2014/08/01/ 2014.
[60] G. Wang, C. Li, Y. Chen, Y. Xia, D. Wu, and Q. Xu, "Reversible voltage dependent transition of abnormal and normal bipolar resistive switching," Scientific Reports, Article vol. 6, p. 36953, 11/14/online 2016.
[61] R. Kaur, J. Kaur, and S. K. Tripathi, "Effect of Ag doping and insulator buffer layer on the memory mechanism of polymer nanocomposites," Solid-State Electronics, vol. 109, pp. 82-89, 2015/07/01/ 2015.
[62] H.-Y. Jeng, T.-C. Yang, L. Yang, J. G. Grote, H.-L. Chen, and Y.-C. Hung, "Non-volatile resistive memory devices based on solution-processed natural DNA biomaterial," Organic Electronics, vol. 54, pp. 216-221, 2018/03/01/ 2018.
[63] Y. Yang, P. Gao, X. Q. Pan, L. Z. Li, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W. D. Lu, "Electrochemical dynamics of nanoscale metallic inclusions in dielectrics," Nature Communications, Article vol. 5, p. 4232, 06/23/online 2014.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *