|
[1] C. I. L. de Araujo, S. G. Alves, L. D. Buda-Prejbeanu, and B. Dieny, "Multilevel Thermally Assisted Magnetoresistive Random-Access Memory Based on Exchange-Biased Vortex Configurations," (in English), Physical Review Applied, vol. 6, no. 2, Aug 23 2016. [2] Y. G. Lu, S. N. Song, Z. T. Song, D. N. Yao, W. Xi, W. J. Yin, H.Zheng, S. L. Feng, "Phase Change Memory Based on (Sb2Te3)(0.85)-(HfO2)(0.15) Composite Film," (in English), Applied Physics Express, vol. 3, no. 11, 2010. [3] B. K. You, J. M. Kim, D, J. Joe, K. Yang, Y. Sin, Y. S. Jung, K. J. Lee, "Reliable Memristive Switching Memory Devices Enabled by Densely Packed Silver Nanocone Arrays as Electric -Field Concentrators," (in English), Acs Nano, vol. 10, no. 10, pp. 9478-9488, Oct 2016. [4] Y. T. Li, S. B. Long, Q. Liu, H. B. Lu, S. Liu, and M. Liu, "An overview of resistive random access memory devices," (in English), Chinese Science Bulletin, vol. 56, no. 28-29, pp. 3072-3078, Oct 2011. [5] R. Waser and M. Aono, "Nanoionics-based resistive switching memories," (in English), Nature Materials, vol. 6, no. 11, pp. 833-840, Nov 2007. [6] R. Waser, R. Dittmann, G. Staikov, and K. Szot, "Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges," Advanced Materials, vol. 21, no. 25‐26, pp. 2632-2663, 2009. [7] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, "Electrochemical metallization memories-fundamentals, applications, prospects (vol 22, 254003, 2011)," (in English), Nanotechnology, vol. 22, no. 28, Jul 15 2011. [8] Y. Lu, J. H. Lee, and I. W. Chen, "Scalability of voltage-controlled filamentary and nanometallic resistance memory devices," Nanoscale, 10.1039/C7NR02915B vol. 9, no. 34, pp. 12690-12697, 2017. [9] G. Sassine, C. Cagli, J. F. Nodin, G. Molas, and E. Nowak, "Novel Computing Method for Short Programming Time and Low Energy Consumption in HfO2 Based RRAM Arrays," (in English), Ieee Journal of the Electron Devices Society, vol. 6, no. 1, pp. 696-702, 2018. [10] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, K. Kim, "A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures," Nature Materials, Article vol. 10, p. 625, 07/10/online 2011. [11] I. Valov, "Redox-Based Resistive Switching Memories (ReRAMs): Electrochemical Systems at the Atomic Scale," (in English), Chemelectrochem, vol. 1, no. 1, pp. 26-36, Jan 3 2014. [12] F. Pan, C. Chen, Z. S. Wang, Y. C. Yang, J. Yang, and F. Zeng, "Nonvolatile resistive switching memories-characteristics, mechanisms and challenges," (in English), Progress in Natural Science-Materials International, vol. 20, no. 1, pp. 1-15, Nov 2010. [13] S. Tappertzhofen, E. Linn, S. Menzel, R. Waser, and I. Valov, "Quantum size effects and non-equilibrium states in nanoscale silicon dioxide based resistive switches," in 2014 Silicon Nanoelectronics Workshop (SNW), 2014, pp. 1-2. [14] K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, "Quantized conductance atomic switch," Nature, vol. 433, p. 47, 01/06/online 2005. [15] T. Tohru, H. Tsuyoshi, T. Kazuya, and A. Masakazu, "Conductance quantization and synaptic behavior in a Ta 2 O 5 -based atomic switch," Nanotechnology, vol. 23, no. 43, p. 435705, 2012. [16] S. Tappertzhofen, E. Linn, S. Menzel, A. J. Kenyon, R. Waser, and I. Valov, "Modeling of Quantized Conductance Effects in Electrochemical Metallization Cells," IEEE Transactions on Nanotechnology, vol. 14, no. 3, pp. 505-512, 2015. [17] H. Lv, X. X. Xu, P. X. Sun, H. T. Liu, Q. Luo, Q. Liu, W. Banerjee, H. T. Sun, S. B. Long, L. Li, M. Liu, "Atomic View of Filament Growth in Electrochemical Memristive Elements," Scientific Reports, Article vol. 5, p. 13311, 08/21/online 2015. [18] A. Prakash, D. Jana, and S. Maikap, "TaO(x) -based resistive switching memories: prospective and challenges," (in English), Nanoscale Research Letters, vol. 8, Oct 9 2013. [19] X. Zhu, W. Su, Y. Liu, B. L. Hu, L. Pan, W. Lu, J. D. Zhang, R. W. Li "Observation of Conductance Quantization in Oxide-Based Resistive Switching Memory," Advanced Materials, vol. 24, no. 29, pp. 3941-3946, 2012. [20] Y.-E. Syu, T. C. Chang, J. H. Lou, T. M. Tsai, K. C. Chang, M. J. Tsai, Y. L. Wang, M. Liu, S. M. Sze, "Atomic-level quantized reaction of HfOx memristor," Applied Physics Letters, vol. 102, no. 17, p. 172903, 2013. [21] E. Miranda, S. Kano, C. Dou, K. Kakushima, J. Suñé, and H. Iwai, "Nonlinear conductance quantization effects in CeOx/SiO2-based resistive switching devices," Applied Physics Letters, vol. 101, no. 1, p. 012910, 2012. [22] J. J. Yang, I. H. Inoue, T. Mikolajick, and C. S. Hwang, "Metal oxide memories based on thermochemical and valence change mechanisms," (in English), Mrs Bulletin, vol. 37, no. 2, pp. 131-137, Feb 2012. [23] S. V. Meschel, J. Pavlu, and P. Nash, "The thermochemical behavior of some binary shape memory alloys by high temperature direct synthesis calorimetry," (in English), Journal of Alloys and Compounds, vol. 509, no. 17, pp. 5256-5262, Apr 28 2011. [24] G. C. Wang, G. Yang, Y. B. Huang, and J. J. Wang, "Effect of heat treatment and thermochemical treatment on linear recovery property of TiNi shape memory alloy," (in English), Advanced Engineering Materials, vol. 8, no. 1-2, pp. 107-111, Feb 2006. [25] J. G. Simmons, "Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film," Journal of Applied Physics, vol. 34, no. 6, pp. 1793-1803, 1963. [26] R. Perera, A. Ikeda, R. Hattori, and Y. Kuroki, "Trap assisted leakage current conduction in thin silicon oxynitride films grown by rapid thermal oxidation combined microwave excited plasma nitridation," Microelectronic Engineering, vol. 65, no. 4, pp. 357-370, 2003/05/01/ 2003. [27] F. C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films," (in English), Advances in Materials Science and Engineering, 2014. [28] A. Rose, "Space-Charge-Limited Currents in Solids," Physical Review, vol. 97, no. 6, pp. 1538-1544, 03/15/ 1955. [29] S. Yohan, L. Sangyouk, A. Ilsin, S. Chulgi, and J. Heejun, "Conduction mechanism of leakage current due to the traps in ZrO2 thin film," Semiconductor Science and Technology, vol. 24, no. 11, p. 115016, 2009. [30] K. Zheng, J. L. Zhao, K. S. Leck, K. L. Teo, E. G. Yeo, and X. W. Sun, "A ZnTaOx Based Resistive Switching Random Access Memory," (in English), Ecs Solid State Letters, vol. 3, no. 7, pp. Q36-Q39, 2014. [31] P. N. Murgatroyd, "Theory of space-charge-limited current enhanced by Frenkel effect," Journal of Physics D: Applied Physics, vol. 3, no. 2, p. 151, 1970. [32] V. Ilia and N. K. Michael, "Cation-based resistance change memory," Journal of Physics D: Applied Physics, vol. 46, no. 7, p. 074005, 2013. [33] V. Ilia, W. Rainer, R. J. John, and N. K. Michael, "Electrochemical metallization memories—fundamentals, applications, prospects," Nanotechnology, vol. 22, no. 28, p. 289502, 2011. [34] N. F. Mott and E. A. Davis, "Electronic processes in non-crystalline materials," Clarendon Press: Oxford, UK, 1971. [35] M. P. Houng, Y. H. Wang, and W. J. Chang, "Current transport mechanism in trapped oxides: A generalized trap-assisted tunneling model," Journal of Applied Physics, vol. 86, no. 3, pp. 1488-1491, 1999. [36] H. Ha and O. Kim, "Bipolar switching characteristics of nonvolatile memory devices based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) thin film," Applied Physics Letters, vol. 93, no. 3, p. 033309, 2008/07/21 2008. [37] D. I. Son, T. W. Kim, J. H. Shim, J. H. Hung, D. U. Lee, J. M. Lee, W. Park, W. K. Choi, "Flexible Organic Bistable Devices Based on Graphene Embedded in an Insulating Poly(methyl methacrylate) Polymer Layer," Nano Letters, vol. 10, no. 7, pp. 2441-2447, 2010/07/14 2010. [38] S. Paul, A. Kanwal, and M. Chhowalla, "Memory effect in thin films of insulating polymer and C 60 nanocomposites," Nanotechnology, vol. 17, no. 1, p. 145, 2006. [39] Q. Lai, Z. Zhu, Y. Chen, S. Patil, and F. Wudl, "Organic nonvolatile memory by dopant-configurable polymer," Applied Physics Letters, vol. 88, no. 13, p. 133515, 2006. [40] W.-J. Joo, T.-L. Choi, K.-H. Lee, and Y. Chung, "Study on Threshold Behavior of Operation Voltage in Metal Filament-Based Polymer Memory," The Journal of Physical Chemistry B, vol. 111, no. 27, pp. 7756-7760, 2007/07/01 2007. [41] W.-J. Joo, T. L. Choi, J.Lee, S. K. Lee, M. S. Jung, N. Kim, J. M. Kim, "Metal Filament Growth in Electrically Conductive Polymers for Nonvolatile Memory Application," The Journal of Physical Chemistry B, vol. 110, no. 47, pp. 23812-23816, 2006/11/01 2006. [42] L. P. Ma, J. Liu, and Y. Yang, "Organic electrical bistable devices and rewritable memory cells," Applied Physics Letters, vol. 80, no. 16, pp. 2997-2999, 2002. [43] M. Lauters, B. McCarthy, D. Sarid, and G. E. Jabbour, "Nonvolatile multilevel conductance and memory effects in organic thin films," Applied Physics Letters, vol. 87, no. 23, p. 231105, 2005. [44] R. S. Potember, T. O. Poehler, and D. O. Cowan, "Electrical switching and memory phenomena in Cu‐TCNQ thin films," Applied Physics Letters, vol. 34, no. 6, pp. 405-407, 1979. [45] S. Gao, C. Song, C. Chen, F. Zeng, and F. Pan, "Formation process of conducting filament in planar organic resistive memory," Applied Physics Letters, vol. 102, no. 14, p. 141606, 2013. [46] N. Kobayashi and K. Nakamura, "DNA electronics and photonics,in Electronic Processes in Organic Electronics," Springer, pp. 253-281, 2015. [47] Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, C. D. Mao, "Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra," Nature, vol. 452, p. 198, 03/13/online 2008. [48] T. Takeshima, L. Sun, Y. Q. Wang, Y. Yamada, N. Nishi "Salmon milt DNA as a template for the mass production of Ag nanoparticles," Polymer Journal, Original Article vol. 46, p. 36, 06/26/online 2013. [49] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, and J. J. Storhoff, "A DNA-based method for rationally assembling nanoparticles into macroscopic materials," Nature, vol. 382, p. 607, 08/15/online 1996. [50] T. B. Singh, N. S. Sariciftci, and J. G. Grote, "Bio-Organic Optoelectronic Devices Using DNA," (in English), Organic Electronics, vol. 223, pp. 189-212, 2010. [51] J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, "Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer," Applied Physics Letters, vol. 88, no. 17, p. 171109, 2006. [52] B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, "Bio-organic-semiconductor-field-effect-transistor based on deoxyribonucleic acid gate dielectric," Journal of Applied Physics, vol. 100, no. 2, p. 024514, 2006. [53] V. Kolachure and M. H. Jin, "Fabrication of P3HT/PCBM bulk heterojunction solar cells with DNA complex layer," in 2008 33rd IEEE Photovoltaic Specialists Conference, 2008, pp. 1-5. [54] T. B. Rujoiu, A. Petris, V. I. Vlad, I. Rau, A. M. Manea, and F. Kajzar, "Lasing in DNA-CTMA doped with Rhodamine 610 in butanol," (in English), Physical Chemistry Chemical Physics, vol. 17, no. 19, pp. 13104-13111, 2015. [55] A. J. Steckl, "DNA – a new material for photonics?," Nature Photonics, vol. 1, p. 3, 01/01/online 2007. [56] X. L. Shao, J. S. Zhao, K. L. Zhang, R. Chen, K. Sun, C. J. Chen, K. Liu, L. W. Zhou, J. Y. Wang, C. M. Ma, K. J. Yoon, C. S. Hwang, "Two-Step Reset in the Resistance Switching of the Al/TiOx/Cu Structure," ACS Applied Materials & Interfaces, vol. 5, no. 21, pp. 11265-11270, 2013/11/13 2013. [57] Z. Ma, C. Wu, D. U. Lee, F. Li, and T. W. Kim, "Carrier transport and memory mechanisms of multilevel resistive memory devices with an intermediate state based on double-stacked organic/inorganic nanocomposites," Organic Electronics, vol. 28, pp. 20-24, 2016/01/01/ 2016. [58] N. J. Lee, T. S. Kang, Q. Hu, T.S. Lee, T.S. Yoon, H.H. Lee, E. J. Yoo, "Tri-state resistive switching characteristics of MnO/Ta2O5 resistive random access memory device by a controllable reset process," Journal of Physics D: Applied Physics, vol. 51, no. 22, p. 225102, 2018. [59] J. Xu, D. Xie, T. T. Feng, C. H. Zhang, X. W. Zhang, P. G. Peng, D. Fu, H.Qian, "Scaling-down characteristics of nanoscale diamond-like carbon based resistive switching memories," Carbon, vol. 75, pp. 255-261, 2014/08/01/ 2014. [60] G. Wang, C. Li, Y. Chen, Y. Xia, D. Wu, and Q. Xu, "Reversible voltage dependent transition of abnormal and normal bipolar resistive switching," Scientific Reports, Article vol. 6, p. 36953, 11/14/online 2016. [61] R. Kaur, J. Kaur, and S. K. Tripathi, "Effect of Ag doping and insulator buffer layer on the memory mechanism of polymer nanocomposites," Solid-State Electronics, vol. 109, pp. 82-89, 2015/07/01/ 2015. [62] H.-Y. Jeng, T.-C. Yang, L. Yang, J. G. Grote, H.-L. Chen, and Y.-C. Hung, "Non-volatile resistive memory devices based on solution-processed natural DNA biomaterial," Organic Electronics, vol. 54, pp. 216-221, 2018/03/01/ 2018. [63] Y. Yang, P. Gao, X. Q. Pan, L. Z. Li, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, W. D. Lu, "Electrochemical dynamics of nanoscale metallic inclusions in dielectrics," Nature Communications, Article vol. 5, p. 4232, 06/23/online 2014.
|